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The formation of percepts through the brain is characterized by four ’univer-
sal properties’: disambiguation of ambiguous sensory stimuli, hysteresis, P300
- EEG - brain potentials and binding of sensory stimuli according to ’Gestalt’
laws. Novel neurostatistical network models are proposed, containing fast neu-
rons, slower Hebb - type couplings, prestabilized coupling factors, fluctuations
and, optionally, a comparison mechanism; in order to illustrate the physiological

plausibility, subnetworks with fixed couplings are explicated that instantiate fast

couplings in effect. The network models exhibit a quenched disorder type free
energy that characterizes a self - organization process in coupling space. The net-
works bind stimuli by forming locally stable collective states, so called Hebb cell
assemblies. The formation of these collective states exhibits four properties that
correspond to the four ’universal properties’ of perception.

1. Introduction

The human brain can be regarded as a highly complex physical system that exhibits a
variety of observable and measurable phenomena. Sensory stimuli are processed by the
brain on various levels; thereby the brain exhibits states that have been characterized
scientifically by psychologists and are called percepts. A neural network is presented
that models the emergence of such percepts; thereby a percept corresponds to an order
parameter of a self - organization process. Empirical physiological and psychological
data and the network model exhibit four corresponding 'universal properties’.

To begin with, the phenomenon of perception of motion is characterized in a pre-
liminary manner: The nervous system is stimulated externally by light projected onto
the retina. The task for the nervous system is to interprete this external stimulation in
terms of objects and their motion. To this end, the nervous system instantiates several
levels of processing. For the present purpose, it is adequate to characterize these levels
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according to the event related brain - potentials that can be measured as’ EEG m?om
¢<o=ﬁm.0m stimulation. These potentials exhibit up to five Eo:irm:ﬁ stereotype peaks ¢
few microvolts at roughly determined times after the external stimulation. The peak
are: a negative one after 100 milliseconds, a positive one after 200 milliseconds followeq
7%. a negative one shortly later, a large positive peak after 300 milliseconds, and a'ne

ative one after 400 milliseconds [1]. The peaks are denoted by N 100, P200, N20¢ Wuomo
and N400. The presently modeled motion percepts correspond to P300 peaks. o Ve

One of the main ideas used in the present network model was proposed by Hebb
[2]. He suggested that a percept is established by the fast formation of a ¢ell assembly
... What I have in mind, in emphasizing half a second or so as the duration of a
reverberatory activity, is the observed duration of a single cantent in perception.
This then is the cell assembly.’

How do the couplings of a cell assembly form? Two different mechanisms have beeq
proposed, by which couplings between inner neurons and peripheral neurons wrom_m
form: According to the Hebb rule, such couplings increase, whenever the presynaptic
and the postsynaptic neuron fire coincidently; whereas 1 suggest that the Hebb rule
should be applied combined with a mechanism of comparison, Maturana {3] suggested

a similar idea. Both mechanisms of coupling formation as well as the cell assembly are

studied here in terms of neural network models.

2. Method

F a first .m:vmmnaoz, four phenomena of perception are made precise in terms of -
certain experiments about motion percepts (see Fig. 1); these four phenomena are -
typical for perception in general. In a second subsection, the above qualitative ideas

are Ema.o precise in terms of neural network models. In the third section, these networks
are applied to model the experiments. As results, qualitative and quantitative properties
of these network models are derived. In particular, it is shown that the networks exhibit
order parameters [4] corresponding to percepts. In the fourth section, these results are
discussed and compared with each other. g

2.1. Modelled Experiments

Perception meE.ﬁm its rich inherent properties especially in situations of mEEm&Q\E.N
Nowadays, such m_ezwa_w:m can be prepared under precisely determined conditions in the
laboratory [6]. Accordingly, such laboratory situations are studied: A square of .dots;

is defined on a screen, see Fig.1. At each instant of time, two non - neighbouring dot

are elicited. So one of two possible patterns is shown at every time, see Fig.1. More’

v.nmnwwo_va these two patterns alternate with constant frequency. An observer perceives
.o;rma a vertical alternating motion or a horizontal alternating motion. So the percep
is bistable® On a longer time scale of seconds, the percept switches randomly, That.i§
the nervous system ‘disambiguates’ the ambigous external stimulation at any instant o
time, but it switches on a longer time scale.

W.Zoﬂm precisely, clockwise percepts and counter clockwise percepts are also produced by persons
This occurs only seldom and is omitted in the following, because such generality is covered by th
generalized model without any additional effort. ’

-
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* o * — o Fig. 1. Stimulation. Stars: first of the two
shown patterns. Arrows mark motion per-
1l 7 cepts. Left: vertical motion percept. Right:
horizontal motion percept. In the second pat-
o * o = * tern dots and stars are exchanged.

In further experiments, the square is changed into a rectangle. As a consequence,
the motion percept between the narrower dots becomes more stable than the other one;
if one slowly modifies the rectangle, then a nice hysteresis can be measured for the two
motion percepts.

Moreover, brain - potentials have been recorded in the above experiments [7]. The
test person is instructed to push a key when the percept changes from horizontal to
vertical motion or vice versa, i.e., when a new percept occurs. It turns out that a
P300 - like EEG can be measured, as if the new percept were externally stimulated
by an event that occurred 300 milliseconds before (see Fig. 2). Of course, there is no
such event. Instead, the new percept changes spontaneously. A control group of test
persons was instructed to press the key voluntarily; as a result, no such EEG - signal
was measured. This shows that the formation of the percept is preceded by ¢ P300 -
like EEG - signal. Similar EEG - measurements have been performed for the Necker
cube [8]. More generally, P300 - EEG - signals can be measured whenever test persons
generate percepts [1].

For an external stimulation, only certain percepts are possible; for simple stimu-
lations, these can be roughly characterized by ’Gestalt’ laws [9]. The characterized
empirical findings can be regarded as four ’universal properties of perception” ‘disam-
biguation’, hysteresis, P300 - EEG - signals and binding of external stimuli according
to *Gestalt’ rules.

2.2 Network Models

In a first part, a basic neural network is specified in order to model the explicated
experiments. The basic neural network contains fast couplings; in a second part, these
fast couplings are instantiated by subnetworks. The basic neural network uses the above
mentioned Hebb rule together with a comparison mechanism; a neural network with a
simple Hebb rule is explicated in a third part. The basic and simplified neural networks
contain discrete time steps; in a fourth part it is shown how discrete time steps with
an appropriate time interval could be selected. In the fifth and sixth parts, the basic
hetwork model as well as the network model with simple Hebb rule are generalized so
that they can be applied to perception in general.

2.2.1. Basic network model

Each neuron takes the value 1 or —1 at discrete steps ¢ = 1,2,3,.... The four dots
are modeled by the ’peripheral’ neurons s;,s5,s3 and s4, see Fig. 3. The peripheral
heurons take values according to a dynamics; these values are 'compared’ with the
states of the dots, see Fig. 1; the peripheral neurons shall reproduce the following time
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-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 =

T seconds

Percept finished
Fig. 2. EEG accompanying spontaneous formation of a new percept. Reference: electrode at
En earlobe. Ordinate: brain - potential in microvolt at right parietal position. Abscissa: time
mn seconds; t=0: test person pushes key to indicate a change of the percept. Data: measured
EEG. Solid line: modeled voltage U,,

behaviour of the dots. The network has to generate the first pattern (u = 1) at ¢ =1,2
the second (u = 2) at ¢t = 3,4, the first (u = 1) at ¢ = 5,6, and so forth. Le. mw
network has to produce the alteration of the presented patterns. For this v::uo%“ th
network has tnner REUTOTE &5, S6, 57 and sg that connect the peripheral neurons sy
$a2, s3 and s4 with 16 couplings W;; (from sj to s;), see Fig. 3. The comparison i§’

formalized by an indicator 7# that is 1 whenever the network performs as desired and:
0 otherwise. .

A Hrwv:mﬁo:m_ dynamics is characterized by a transition probability from {s;(t)} to
si(t + s ;

i

» __explhi(t + 1)s;(t + 1)/T .
Platt+1)] = g2 pCE D) K\ & with hi(t + 1) = WM W (t)Gs 01 ():

Here T is a formal temperature that models statistical fluctuations, h; is a mOambw_
local field and Cij are prestabilized factors that are characterized by the horizontal;
and vertical sides of the presented rectangle, i.e., if W;; is horizontal in Fig. 3, .?a%&
iy = Cn, otherwise (;; = (,; ¢, is small if the vertical side is large; ¢ is small if the
horizontal side is large. The prestabilized factors might be interpreted with synaptic
amnm?.mmm. .,Hrmmn dynamical effect gives rise to the 'Gestalt’ laws. The above square of the
couplings is unusual, however it can be eliminated by the substitution K;; = W32 and
AK;j = 2W;; AW,;. The coupling dynamics is established by a Hebb term Eovo_.wonw._
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Fig. 3. Network architecture. Left: network; an
arrow indicates two couplings, one in each direction.
$1,82,83 and s4: peripheral neurons, corresponding
to corners of the square. ss, 36,87 and ss: inner neu-
+ + rons. Right: a coupling state with nonzero horizontal
couplings, zero vertical couplings are not explicated.

H w —_— —

§4 +* 87 ++ 83 84 87 S3

8; S5 8 55

Fig. 4. Network that instantiates a
trilinear coupling. LEFT: s; s;: presy-
naptic neurons. si postsynaptic neuron.
Long arrows: synapses. Short arrows: in-
hibitory synapses on synapses. RIGHT:

Sk Sk equivalent network with a trilinear cou-
pling Jii;.

to a learning rate a, a decay term b and the above indicator .

Wi (t+2) = Wi (t+ 1) + AW+ 1), (2)
T 2
AWii(t+1) = T2 [aWiiGyi f = bWy 3 W], 3)
kl
o si(t + 1)s;(t) if 5; is inner neuron; (4)

si(t +2)s;(t + 1) if s; is inner neuron.

In eqs. (3) and (4) and in the following, the time arguments of couplings Wi, Whi...
are t+1 and are neglected, for short. Rougly speaking, at the time ¢ + 1 the couplings
are changed according to signals that they transferred to and from the inner neurons
at that time. The term e* is 1 plus the number of times at which the network was
successful at pattern p divided by 1 plus the number of times at which the pattern p
occurred. ¢ can be interpreted as a success rate. According to its dynamical effect, e#
can be interpreted as an attention parameter [10], so that the attention is high when
the network has little success.

2.2.2. Fast couplings by subnetworks

»

EE
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If a neural network is used to model empirical findings, then it should consist of co
vozmim.z_mo have been observed in the nervous system. For this reason mcgmgohm.
are explicated that instantiate fast couplings effectively. For this c:EOmmM first subn ﬁm
Solﬁm. are proposed that instantiate trilinear couplings, then subnetworks “S:Ur tril o
ao:vrvmw are suggested that instantiate fast couplings effectively.
Trilinear couplings by Synapses on synapses: In nervous systems there oceur
synapses on synapses [11]. These can inhibit or enhance the signal transmission E: .
. .F this part a network with such synapses is explicated that instantiates in effe .
trilinear coupling, that is, the neuronal dynamics

inear

ct &

skt + 1)= m@b?\w&m%uvﬁ.ﬁvv

is effectively instantiated, see Fig. 4.
The neuronal dynamics without synapses on synapses is

s(t+1) = wmiM Fri(si(t)) — Ax)

with a synaptic stimulation Fri(si(t)) = Jrisi(2). .
The effect of the inhibitory synapses on synapses can be expressed with a function .

analogous ﬁo.nrm above Fy; as follows. The neuronal dynamics with inhibitory mwcwvmmm
on synapses is ,

sp(t+1) = mmuAM Grij(siysi) — M)

with a synaptic stimulation

QE?:&.VH AM@.T Mm.w. H~m=m.&.”l#

is, the voﬁm%wmvro neuron is stimulated by the coupling Ji; if the Eow%b%ﬂ,
neuron s; fires and if the neuron s; with the inhibitory synapse does not fire. nd
The performance of the network in Fig. 4. with couplings and threshold

Jps = Jrj =1 and with A\, = —1.5 ' Amv

1s adequately discussed with a Table 1. The four rightmost columns correspond to
the four possible values of the two presynaptic neurons. The first two rows amvuommm;
the values of the presynaptic neurons; the 3rd and 4th row represent the values of
the synaptic stimulations G (see eq. (7)); the 5th row represents the value of the:
postsynaptic neuron; the 6th row represents the value of the postsynaptic neuron‘in
a network with a negative trilinear coupling (see eq. (5)); the 7th row represents’theé;
value of the postsynaptic neuron in a network with a positive trilinear coupling (seé&q

Amvvw_&m _osame. 325&8».8ﬂrmé_:a.&no:rmvo&mwswvaozmcnosmo:ra analogous
network but with couplings and threshold e

Jri = Jij = —1 and with A, = 1.5.
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Because the 5th and 6th Table. 1. rows contain the same configurations of signs,
the network in Fig. 4. with eq. (8) instantiates a negative trilinear coupling (see Fig.
4.). Analogously, since the 7th and 8th rows contain the same configurations of signs,
the network in Fig. 4. with eq. (9) instantiates a negative trilinear coupling (see Fig.
4.).

; Altogether, the present simple network models show, how an effective trilinear cou-
pling might be instantiated by synapses and synapses on synapses.

Fast couplings: In nervous systems there may occur changes of synaptic weights
within 4 minutes, while the membrane potential of a neuron may change on the time
scale of milliseconds [11]. Moreover, the nervous system contains neurons that change
their membrane potential smoothly rather than according to an ‘action potential [11].
Such a smoothly varying neuron is modeled with the following difference equation

DQEQV = ES\QV — omS\Qv AHOV

where hw () is the formal local field and sw(t + 1) = sw(t) + Asw (t). Here b is a
decay coefficient.

In this part a network with such a smooth neuron sw () is explicated that instanti-
ates in effect a coupling K;;(¢) that changes on the time scale of milliseconds, that is,
the local excitation h;(¢) and the coupling K;;(t) are

hi(t + 1) = Ki;(t)s;(t) (11)

with ‘a prestabilized weight ¢;; and with a fast weight Wi;(t) as factors K;;(t) =
GiiWij(t) and with a fast weight dynamics AW;;(t) = Cijsi(t)s;(t) — bW;;(t) and
Wi;(t + 1) =W, )+ AW;;(t).

The equivalence of the two networks in Fig. 5. is shown as follows: By definition of
trilinear couplings, the trilinear coupling J;w; in the left network gives rise to the local
formal field

\&.a.:@ + C = ,\u.ss.m;&vms\@v, AHMV

By construction (see Fig. 5.), the trilinear coupling is the same as the factor (;;; so one
gets

}%2? + 1) = Gjsa(t)sw (1) (13)
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Fig. 5. Network that instagy
tiates a fast coupling dynamieg;
) LEFT and RIGHT: si(t): vnomwrm..wf,
si(t) 55(1) tic neuron. 5;(t): postsynaptic b@ﬁ,ﬂw

LEFT: sw(t): smoothly varying ney.
ron. Arrows: trilinear constant .,awu

swit plings Jiwi = Jwi; = ¢;j. RIGH]
(t) w(t) Ki(t) =Wy, QX:.&.S m@:?ﬁmu& network “&; M wﬁnmvmwmn :
Wi (t) = sw(t) e Ki() = GiWii(t). Therey
Wi;(t) is the membrane potential of the
Twis = G smooth neuron sy (¢) of the left (equiv-

alent) network. a0

ool
By construction Amm,m Fig. 5.) sw(t) = W;;(t) and sw(t) and Wi;(t) evolve m.nnon.&um
to the same m%ﬁwazm (see eqs. (10) and (11)). Thereby and by identifying the local
formal field £7*¥"(t 4 1) of the network in the right part of Fig. 5. one obtains ‘

i ; .

F.w.m.\«Am + Hv = n\ﬂ\.:ANvA.:.qu&v = \p.m,«%?«ﬁ& 4+ ﬁv AH&V
So the local m.ozd& fields &.& ‘(t+1) and }.M&ZQ + 1) at the postsynaptic neuron

8j are the same in the two networks in Fig. 5.; in this sense, these two networks ‘are

equivalent. Ie., the considered equivalence relation is the equality of formal local fields -
at the postsynaptic neuron. SE

The present models for fast synapses contain a neural dynamics with a signum -
function, in contrast to the neural dynamics with a transition probability (see eq. (1)).
However, the neural dynamics with the above transition probability becomes that with
ﬁ.vo signum function in the zero temperature limit; conversely, the dynamics with thé
signum function can be generalized to that with the above transition probability. " P

Altogether, the present simple network models show, how an effective fast cou-
pling K;;(t) might be instantiated by a network with constant trilinear oo:wmumw.mmm.
a smoothly varying neuron swt).

2.2.3. Simplified model

The basic network model is now modified so as to obtain a network model withid
simple Hebb rule. For this purpose, the architecture remains unchanged (see Fig. 3),
as well as the transition probability (see eq. (1)). However in this simplified model;
the peripheral neurons take the values as the dots on the screen (see Fig.
coupling dynamics, the factor 7#/e* and the sum are omitted, so one gets

Wij (¢ +2) = Wi (¢ + 1) + AW;;(t + 1) with

AWii(t + 1) = aWy;Gis f — bWijg with

if s; is inner neuron;
if 5; is inner neuron.

_ ] si(t+ 1)s; (%)
/= A&Q +2)s;(t+ 1)

g
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[ > W3 if s; is peripheral neuron; )
g= Y S\@ if 5; is peripheral neuron. (18)

The factor g is motivated only qualitatively. This factor models a finite capacity for
signal transfer at each peripheral neuron. Such a property might be motivated by the
empirical finding that the number of synaptic and the number of dendritic contacts of
a particular neuron is constant [12]. Formally, one may interprete this condition as a
local analogue of the global interaction of couplings proportional to b (see eq. (3)) in
the basic model.

2.2.4. Selection of appropriate time intervals

In the above basic and the simplified network model, the time discretization has been
chosen so that a time step is half the time interval between the switching of the patterns
on the screen (see Fig. 1). This can be modeled as follows. The couplings in Fig. 3 are
provided for a set of time intervals, one of which is the one explicated above. It will
be shown later as a result, that only the couplings with the appropriate time intervals
become nonzero.

2.2.5. Generalized basic network model

The basic network model is generalized so as to obtain a network model that performs
the binding of stimuli. The genralization can be expressed with three steps. First, an
inner neuron with four couplings is introduced for any pair of peripheral neurons; for in-
stance, in the case of Fig. 3 this yields two more inner neurons with four couplings each,
connecting s1 with s3 and s3 with s4. Second, the external stimulation is established by
a set of dots and a sequence of p patterns y, each specifying what dots are elicited in the
pattern and each occuring at a certain time. Third, one peripheral neuron is assigned
to each such dot, i.e., the network consists of these peripheral neurons together with the
above specified inner neurons with their couplings. Thereby, the couplings shall obey
the normalization condition 2oii m =1

2.2.6. Generalized model with simple Hebb rule

The simplified network model is generalized so as to obtain a network model that
performs the binding of stimuli. The generalization is expressed by the above three
steps.
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3. Results

3.1. Analysis of the basic model

The combined neuronal and coupling dynamics exhibits [13] ergodicity Eovanzmm....?m
As a consequence, the network is characterized by a mean coupling change ADS\.
together with a mean neuronal change. The neurons are regarded as fast <m1m5ﬁ
and the mean neuronal change is eliminated in the adiabatic limit [4]. The remainig
average is taken over the two patterns (p = 1,2) and the neuronal configurations s
mnner neurons. So (AW;;) is a function of W;;, i.e. it is a vector field. It turns out tha
the vector field (AW;;)(W;;) is the gradient of a scalar potential V(W;;). These result;
are made precise as follows. g
Potential Theorem: In the adiabatic limit

(AWi() =~ -

with a potential Bk

«\lu@ 212 aT 2 u
IMAM&.S\QV IMMUFN
u=1

with partition functions

i=5,6,7,8

ARES M T exp[—H (t)/T]

si(t4+1)=41

and a formal energy function

8 4
H(t)= =3 hi(t+1)si(t +1) = Y hi(t + 2)si(t + 2).

i=5 i=1
The locally stable (steady) states exhibit (AW;;(t)) = 0 and are the local minima of the::
potential V. A proof is presented in the appendix. Networks with nonzero couplings
form below a critical temperature. The potential is similar to a free energy of a systeni
with quenched disorder [15], because it contains a sum of partition functions. The local

minima of the potential V can be interpreted in terms of order parameters [4].

The potential V has to be studied in the 16 - dimensional space of couplings.
make this study transparent, a symmetry is used that is expected to be realized at least
approximately: The couplings that are necessary for a successful coupling state take
the same absolute value; thereby a successful coupling state achieves 7# = 1 at 7€10;
fluctuations. A first coupling state that is successful consists of the § horizontal cout
plings (see Fig. 3), with the homogeneous weight |W},| (used symmetry). Analogousl
a second coupling state that is successful consists of the 8 vertical couplings, with the:
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homogeneous weight |W,|. Next, coupling states that are linear combinations of these
two states are studied, while a general analysis is included in the section ’generalization’.
r# is (see Fig. 1)

7! = 1 is equivalent to (s1, 53, 83,54)(t) = (1, —-1,1,~1) = —(51,592,83,54)(t + 2)

72 = 1 is equivalent to (s1, 52, s3,54)(t) = (=1,1,—1,1) = —(s1, 59, 53, 54)(t + 2). (23)
Next one may calculate the energy Hiop(t) of the couplings Wis, Wi, Wesa and Was at
the top of Fig. 3. A successful configuration of signs of the nonzero horizontal (or
vertical) couplings is so, that clockwise couplings are negative and other couplings are
positive (see Fig. 3). So

Hiop(t) = W?S\Hl&@v = 82t +2) + 52(t) + 512 + 2)]ss (¢ + 1). (24)

Analogously holds:

I

Hiigne(t) w@ W7 [—sa(t) — sa(t + 2) + s3(t) + sa(t + 2)]s6(t + 1),

1
Hypottom(t) = m@ W2[—s3(t) — sa(t +2) + s4(t) + s3(t + szt + 1),
1
.m._m».nva = Mh.c g_cw_mlm»ﬁmv - MHAN + Mv =+ MHANV + MAQ =+ Mvu_.wmA& -+ Hv AMWV
Together with eq.(23) one gets the corresponding partition functions

Zip= .  exp[20,Wiss(t +1)/T] = 2 cosh[20,W2/T] = V- (26)
ss(t+1)==%1

Thereby, the configurations of the peripheral neurons are determined through eq.(23)
and the partition functions Z* are products Z# = Ziop N.hm_: Nhosx.:: Ziws Zlop 18
explicated above. Analogously one calculates the other partition functions, so one gets

the partition function
Z* = 16[cosh(2¢, W} /T) cosh(2¢, W2 /T))*. (27)

With polar coordinates W, = r cos ¢, W, = rsin ¢ one gets
L2 2 ;
V(r,¢) = 16br* — 2aT[In oOmrAwJ.ﬁu? cos? ) +In Smrﬁﬂﬁm@ sin’ ﬁv_ (28)

A term aT In(16) is irrelevant and has been omitted. The first term establishes a radial
potential Vi(r), while the last term is an angular dependent potential Vs(r, ©) that
determines the wvertical versus horizontal couplings. For sufficiently small fluctuations
there occurs a nonzero radius r. The rescaled angular potential

. w w
Q.Aﬁﬁvnﬂ Mwwﬁ\u?.u ﬁvﬂl_: oOmEWﬁMQ cos? p) — In nOmrAﬂﬂwnc sin? ) (29)
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Fig. 6. Disambiguation.

Rescaled i i i i
e escaled potential U as a function of the angular variable ¢. Uis

d.vm.umm curve: one of two equally stable coupling states occurs for o =¢Ch=1
at one of the minima at 0 and 7/2, due to a spontaneous (via random fluctuations) breaking -
of symmetry. Coupling states correspond to percepts, so no mixed percepts emerge bos.mm

curve: local minima are not m@:m.:%mawzmmg?ﬂ~w:&meﬂm. 5 n.

is shown in Fig. 4; for W
¢n and ¢,.
(1) m,m.: ¢ = {y = 1, the minima are at p=0(ie,W,=0)andat ¢ = (e, Wy = ov‘
e, = 0),
MmmﬁM _mw m.. :Emow. curve. If ¢ = 0, then the vertical couplings are 0. This is interpreted
s the horizontal motion = Z i i [hi
b inberpcted o o n‘@mw_nmv?. If ¢ = 7, then the horizontal couplings are 0. This
£ e € vertical motion percept. Both percepts are equally stable. Thi
rb ling is in wmnmmﬂma with experimental data, [6], namely, the subjects perceive either
orizontal or vertical motion. The symmetry of the two motion percepts is broken

spontaneously; i.e., as a consequence of a stochastic dynamics with two possible stead,

2 _ .
r* = 1 and two pairs of values of rectangular parameter

(2) For ¢, = land ¢, = ini i = i
e i =l Co : mv the E_:_Emam_..m still at ¢ = 0 and ¢ = %, see Fig. 6. lower!
¢ » the minimum at ¢ = 7 is more pronounced. I.e., the state at p=%5
W %oamwnm%_m. mm.a has a larger basin of attraction. Le., the vertical motion percept is -
referred. Is 1s In qualitative agreement with experi 2
i , g periments [6] and corresponds to a
(1 mﬂ.m 2) The values W, and W, characterize local minima of the potential V. in

Mﬂ% ing space m:.m can vm regarded as order parameters [4] corresponding to wmﬂmmﬁm
e ambiguous stimulation is disambiguated, because no mixed order parameters occur. .

Spontaneous mé:oE.:m between percepts and hysteresis at rectangular length variations”
occur for systems with such potentials (4] .
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Next, the EEG - measurements are modeled. A test person observes the alternating
patterns (see Fig. 1). Thereby it perceives at any instant of time either the horizontal
or the vertical motion percept; additionally, the percept changes spontaneously at some
instances of time, i.e., without extra stimulation. When the percept switches, then the
test person pushes a key. Simultaneously the EEG of the person is measured, averaged
and drawn in such a manner, that the time is zero when the test person pushes the
key, i.e., immediately after a new percept emerged (see Fig. 2). In a control group, test
persons push the key voluntarily (i.e., without percept); as a result there is no EEG -
signal (in contrast to Fig. 2); this indicates that the EEG - signal (see Fig. 2) is due
to the percept. The EEG - signal is modeled as follows. The spontaneous breaking
of symmetry is used; accordingly eq. (29) is used with sinp = 0, for the special case
(» = 1 and it is expressed with W), (for simplicity)

V(Wi) = 16bW;} — 2aT'In oOmEWS\NY (30)
s0
2
AW, = —64bW3 — 8aW, Szims\mv. (31)

Here the equation of motion for W}, is obtained from the potential theorem by taking
the derivative. The parameters a,b and T are chosen so that a qualitative agreement is
provided as shown in Fig. 2; a systematic fit appears inadequate because the observed
data are insufficient. The following values have been used: a = 1s™%, b = 9/32 s~ 1,
T = 0.0088. The modeled voltage Uy, is proportional to the formal local field (see eq.
(1)), i-e., to W2; additionally, a subtrahend is modeled, it is interpreted as the decay
of Wy due to another (unexplicated) percept that emerges 0.4 s later (initiated by a
higher level of processing); so the modeled voltage is Un(t) = 10uV[W2(t) — W2 (t —
0.4 s)]. (This unexplicated percept might be initialized at another level of processing,
see introduction.) Altogether, the above four 'universal properties of perception’ have
been modeled: ’disambiguation’; hysteresis, P300 - signals and ’Gestalt’ rules. Next the
present network is generalized.

3.2. Analysis of the generalized basic model

Analogously to the above particular model, the possible percepts are characterized by
a potential V. For short, ’peripheral neurons’ are abbreviated by ’p.n.’ and ’inner
neurons’ by ’i.n.’. Generalized potential theorem: In the adiabatic limit the averaged
synaptic change is determined by a potential function as follows.

Im<. Iv mwnﬂ w t
A>§;§|I%§§§<s Mﬁmus\av |ﬂ WU__:N awv
with

p.n. i.n.

z¢= Nt Y expl-H(t)/T] (33)

h_:vqu_.ﬁﬁn_vwv u..A«.THv”wnH
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and

H(t) = |MU3.Q+ 1)si(t + :lwwiimvilmv. (34)

The locally stable (steady) states exhibit (AW;;(t)) = 0 and are the local minima of the
potential V. The proof is analogous to that of the potential theorem, see above. Next,
it is shown that disambiguation is produced by the network model via the phenomenon
of spontaneous breaking of symmetry. For that purpose, one may consider two locally
stable (steady) coupling states P, with couplings W;;(1) and P, with couplings W;;(2).
The question is, whether a superposition Wij = aWi;(1) + BW;;(2) can be locally stable;
any binarily mixed percept would be such a locally stable superposition. Disambiguation
theorem: Superpositions of P, and Py that do not vary with T do not occur. A proof
is presented in the appendix. A possible superposition of P, and P, can be destablized
by T - variations, in contrast to Py and P,. Mixed percepts are unstable in this sense.
Next, P300 - signals are modeled. For this purpose, the form of the potential V is
studied. Potential calculation lemma: The potential V takes the following form.

v=i(m) -

T p in p.n. p.n.
wI M M In cosh Fw D OWEGist(t+2)+ % > Ewozni . (35)
u= J k

2

A proof is given in [13]. Next, the time course of the formation of couplings is studied.
For that purpose, a radius is introduced as follows 2 = M& S\m and W;; = rw;;. Using
this radius, the potential (see eq. (35)) can be rewritten as follows U

b, aT & in, r2 ;
V= d lﬂMtU.MUFoOmeI%NEM ;

with the formal local angular energy function

p.n. p.-n. .
HY = Mu@t@%%@ +2)+ MU wikCik sy (1). (36)
J & v

Lemma about equation of motion: If one changes differences into differentials, then one
obtains the following differential equation for the radius mw = IWW. A proof is given in
[13]. Next one may insert the potential (see eq.(36)) into the above eq. to obtain

in.
M‘H = l.@ﬁw +.Qﬂ.w MM@U*\% nmbT Ammutv

In the formal local energy function (see eq. (36)) there are only nomalized quantities;:
so the average (H!');, = 530, 2™ HY is in the interval [~1,1] and does not ’vary very

(37) .

2

2t
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much for different percepts’. Accordingly one may approximate H! in the hyperbolic
tangens (see eq.(37)) by its averaged value (H/);,, so as to get

dr r?
— = —br® + ar(H!);, tanh AMWC@":V:_V

dt (38)

This approximation is known as a mean field type approximation. Eq.(38) can be
mapped to eq. (31) as follows. The radius r corresponds to Wj: the average (H)i,
corresponds to 4; 64 b in eq. (31) corresponds to b in this eq.; 2 a in eq. (31) corresponds
to a in this eq. So the curve in Fig. 2 is expected for any formation of couplings, that is,
the present network model yields an explanation for the formation of percepts accom-
panied by P300 - EEG - signals. Altogether, the generalized model instantiates the four
‘universal properties of perception’ as follows: Disambiguation occurs via destabiliza-
tion of mixed states; hysteresis occurs due to local minima of a potential; a relatively
uniform dynamics corresponds to P300 - signals; the binding of stimuli according to
prestabilzed couplings corresponds to ’Gestalt’ rules.

3.3. Analysis of the generalized simplified model

Analogously as for the basic model, the averaged changes of couplings and the emerging
networks can be characterized by a potential as follows. Generalized potential theorem
for the simplified network: In the adiabatic limit .

p-n.  in.

14
OV i V= mMU AM:\SW + SEVN ok > Inz# (39)
k { u=1

OWi;

(AW;;(1)) = - v

where

ZH = MU MU exp[—H(t)/T], (40)

si(2),5:(i42) si(t+1)=%1

H(t) = !_M:U\:Q+:.&.Q+Hvlmb&ﬁ+wv$@+wv. (41)

The locally stable (steady) states exhibit (AW;;(t)) = 0 and are the local minima of the
potential V. The proof is analogous to that of the first potential theorem; the above eqs.
and eqs.(32) - (34) differ only in two details: The partition functions Z* do not contain
an indicator 7# here, because no comparison is processed. The decay term proportional
b is of a local nature here.

The binding of stimuli in the simplified model is not ambiguous in the following
sense: Disambiguation theorem for the simplified model: For a locally stable network
that does not vary with T, the following holds. Each peripheral neuron sends a signal
via ezactly one inner neuron to one peripheral neuron and receives a signal via exactly
one inner neuron from one peripheral neuron. A proof is presented in the appendix.
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The selection of an appropriate delay time for the time discretization (see section -2)
can be achieved with the same mechanism of disambiguation. -

Next, one may model the EEC:. For this purpose one may introduce for each vm:.
ripheral neuron s; two multidimensional polar coordinate systems, one for the couplings
that direct to s; with radius r; (see eq. (47)), one for the couplings that direct from g,
with radius ¢; (see eq. (48)). Each such coordinate system establishes a local ogromom.
nal coordinate system. Because the set of couplings is expressed with the set of ar.m.mm‘
-coordinate systems, this set of coordinate systems establishes a local orthogonal coor

dinate system for all couplings. As a consequence, the change of a radius vector r; or ¢
can be expressed as the corresponding partial derivative of the potential with respect’
to that radius. Moreover, if one starts at zero couplings (for simplicity), then mxgzm
one coupling grows in each of these local orthogonal coordinate systems (according {o
the disambiguation theorem for the simplified model); the growth of this coupling takes
place in the same manner as described by eq. (31). As a result, the same modeled braii
potentials Uy, occur, see Fig. 2.

4. Discussion

It has vm.mu shown, that the proposed network models can be used to bind a se-
quence of stimuli patterns to motion percepts. This includes the case, in which ?w_,

sequence contains only one pattern, this case corresponds to a usual percept. This

binding by networks exhibits four properties: disambiguation, hysteresis, a sterotype’
time behaviour and the binding according to rules that can be encoded in terms of
prestabilized coupling factors iz

The generalized basic network model should be compared with the generalized sim-
plified network model. By definition, these two models differ in two aspects: First,
.orm basic model contains an indicator 7#, by which a correspondence with the stimuli
1s achieved; whereas the simplified network model does not achieve a correspondence
with the stimulation, in contrast, that correspondence is produced in advance and the
peripheral neurons are simply bound via inner neurons. As a consequence, only the
basic network model can fail to produce a correspondence. Second, the basic model
contains a global decay term proportional to b, while the simplified model has a decay
term proportional to a sum of the couplings that direct to a peripheral neuron and
another sum of the couplings that direct from a peripheral neuron. So the dynamics of
the simplified model is completely local.

The four ’universal properties’ of the binding by the networks can be compared :
with four corresponding properties of the binding of sensory stimuli through the brain;
disambiguation, hysteresis, P300 EEG signals and *Gestalt’ rules. For this purpose, one
may characterize the processing time of such binding by the P300 EEG signals..: As"
a result, one may exclude similar processes performed by the brain at different times;
for instance, before the brain generates a percept, it processes the related but different
data analysis of *motion detection’ during the first 100 milliseconds after the external
stimulation [16]. If one applies the networks as models for the EEG signals, then a
neuron in the network corresponds to at least 10000 nerve cells of the brain, because
signals measured as an EEG origin from at least 10000 nerve cells [1). 'Gestalt’ rules |

»,
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can be encoded by the prestabilized coupling factors; for instance, one *Gestalt’ rule
states that narrow stimuli are preferentially bound, this is achieved by the prestabilized
factors (; and (.

In order to model the fast synapses, one may explicate subnetworks that consist
of physiologically observed components only and that exhibit fast couplings effectively.
Analogously, in order to model the used time discretization, one may model couplings
with various delay times, as a result, a delay time is selected through the coupling
dynamics.

Altogether, the correspondence between the network models and the nervous system
is explicated for certain measurable phenomena. It can be performed in a rough quan-
titative manner. In particular, the sponaneity of percept formation is reflected in the
network dynamics: the solutions of the equations of motion for the averaged couplings
that establish a percept (see eqs. (31) and (37)) exhibit the initial state at infinite neg-
ative time, consequently the coupling formation is initialized by a random fluctuation,
Le., spontaneously. According to this overall qualitative and rough quantitative corre-
spondence between the proposed network models and the observed phenomena of the
nervous system, one may regard the present network models as promising *Ansatze’ for
more precise future theories of percept formation by the brain. The present networks'
do already model four ’universal properties’ of percept formation.

5. Conclusion

The brain binds stimuli received by sensor neurons to certain collective states of inner
neurons; an important class of such collective states are the percepts. Percepts exhibit
four *universal phenomena’: disambiguation of ambiguous stimulus configurations, hys-
teresis, P300 EEG brain potentials and binding according to so called *Gestalt’ rules.

Though Hebb formulated already more than fifty years ago the hypothesis that
these collective states are due to cell assemblies [2], a theoretical model for these cell
assemblies has hardly been developed so far. In the present study, neurostatistical
network models have been proposed that operate along the lines of the cell assembly
idea. In particular, these networks contain prestabilized coupling factors in order to
encode *Gestalt’ rules, fast couplings in order to bind stimuli according to the 'Gestalt’
tules and neurons in order to represent the stimuli.

The analysis of these models is performed in terms of vector fields that are gradients
of a scalar potential V similar to a free energy. The potential V has the form of a
system with quenched disorder, because it contains an average of partition functions.
The analysis yields collective states as local minima of the potential V, these collective
states can be described by order parameters [4]. The networks exhibit four properties
that correspond to the ’four universal’ properties of perception. In particular, the P300
EEG brain potentials have been modeled quantitatively by adjusting the three model
Parameters: learning rate a, decay rate b and formal temperature T.

The network models can be divided into two classes, those with a simple Hebb rule
and a completely local dynamics and those with a Hebb rule combined with a compar-
ison mechanism and a global decay term. Both models exhibit the four properties, this
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indicates that the models are robust. The network with the comparison mechanism can
make errors at the stimulus level, this is possibly in agreement with the nervous system,
Altogether, four ’universal properties’ of perception have been modeled with rela:

tively simple and robust neurostatistical networks along the lines of the cell assembly
idea and the Hebb rule.

Appendix K

First, the potential theorem is proven. The average is taken over the 2° neuronal
configurations, 2* for inner neurons and two for peripheral neurons. So the averaged
change of couplings (see eq.(2)) is .,

i=5,6,7,8

1 2 T
M u..ms._v:”uwu_.
WH explh¥(t + 1)si(t + 1)/T]

ims eXP(hf (t + 1)si(t + 1) /T + exp[—hE(t + D)s;(t + 1)/T]

m explht(t +2)si(t + 2)/T]
it P+ 2)si (8 +2)/TT + exp[—hE(E + D)s;(t + /1] <

X

Ts\abi — Wi Y %&. (42)
ki

The probability function for the neuronal states has been determined according to
eq.(1). It can be simplified in terms of the above energy function (take the product in
the denominator and the numerator, multiply sums according to the distributive law
and multiply exponentials). So one gets

i=5,6,7,8

W MU T exp[—H(t)/T)

i <i=5.6,7.8 bt
5:(t4+1)=%1 e# M.:Q+CHHH exp[~H(t)/T]

[aWssr —owiy 3w (13)
ki

(AW =

DO =

i=5,6,7,8
MU:.A.+CN#~ . mxtmlmﬁsv\u..“_
T=5.6,7,8
MU~..:+CHHH exp[—H(t)/T)]

In the adiabatic limit, e# takes its average value . By inserting

it one gets
[ 2. i=56,78 u y
(AWt + 1)) = 5 3 ) ﬁﬂﬂmi ()/T] y
#os (14 D)=21 Lusi(i+l)=21 T mxllmﬁv\i L
TH\SR&\!S\S\ Mus\&. (44).
kl
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In the adiabatic limit, the couplings are constant on the time scale of neuronal change;
so the average can be performed for the above subtrahend

2, G Muwnﬁmﬁwm& T4 exp[—H(t)/T)[aWi;(i; f]
(AW;j) = —bW; MU Wa + ) MU 1=56,78 I - (45)
ki I MU.W_.:._vaHu_nw T GNU_Hl Amv\ﬂu

mwv\..‘ in eq.(19) one gets the same eq. as the above. q.e.d.

Next the disambiguation theorem is proven. That is, it is shown that a superposition
of P, and P, is not locally stable or varies with T. Most generally, a mixed state consists
of nonzero couplings W;;(A) that are nonzero only in P;, of nonzero couplings W;; (B)
that are nonzero only in P; and of nonzero couplings W;;(C) that are nonzero in P;
and Pp. The couplings are expressed in terms of angles as follows. A polar angle ¥ is
chosen so that cos ¥ is proportional to a and sin 9 is proportional to 8. Another angle
¢ 1s chosen so that

By taking the derivative

aWi;(1) + BW;;(2) = Wi; = cos YW;;j(A) + sin 9 cos oW;; (B) + sin I sin eW;;(C). (46)

At a locally stable state one obtains mwv\:. = 0. By the chain rule this implies WW mw..wg. =
W,

0. The second factor is nonzero, because 59~ cannot diverge; consequently, the first fac-
tor is zero, i.e., WW = 0. Because the sets of couplings W;;(A), Wi;(B) and W;;(C) are
disjoint, one obtains W7 = W7 (A) cos?d + W2 (B)sin® 9 cos? o + WZ(C)sin® ¥sin? .
Because the couplings occur in terms of squares in the potential V, it is adequate to

. . . W2 w2
study the derivative with the chain rule as follows WW =2 mww_\\_w —55 - Because g7 is
proportional to sin ¥ cos 9, so is wv ie., % = sin 9 cos ¥ Rest(T) = 0; thereby Rest(T)

1s a term that depends on the temperature. The above product becomes zero, if Rest(T)
is zero or if sin ¥ cos ¥ is zero. Only the second case yields coupling states that do not
vary with the temperature, so only the second case is considered, thus sind cosd = 0.
So a locally stable state that does not vary with temperature is not a, superposition of
P; and Ps. q.ed.

Next the disambiguation theorem for the simplified model is proven. For this pur-
pose, it is convenient to express the couplings W;; that direct to a peripheral neuron s;
in terms of multidimensional polar coordinates [17]

Wik = r; cos ¥y,
S\i =T sin .%tn cOos %N.T
§3 =7 sin %; sin %2 COs .%s.iu -
Wiz = r; sin ¥, sin 9y sin Vim....sindjy. (47)

At a local minimum of the potential, the partial derivative with respect to an angle
Y5 1s zero. Such a derivative takes the form mwa.\,. = c08 ¥y, sin 9y, rest(T), whereby
rest(T) expresses a T - dependent factor. In a locally stable network that is not T -
dependent, the condition cosd;, sin Vinrest(T) = 0 is fulfilled independently of T, so

cos ¥in sin ¥y, = 0, consequently ¥;, = 0 or ¥;, = 7/2. Because the multidimensional
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polar coordinates establish a locally orthogonal cordinate system, exactly one polar
angle ¥;n is nonzero, thus the peripheral neuron receives a signal from exactly one inner

neuron. One may introduce multidimensional polar coordinates for the couplings that
origin from a peripheral neuron s;

Wi = q; cos Oy,
Wi = ¢; sin 0, cos 9y,
Wi = ¢i sin 94;sin 9y; cos 9,5, .
W.i = g;sin 9, sin ¥y sin O ;... sin Iy, (48)

With it one may show analogously, that a peripheral neuron sends a signal to exactly
one inner neuron. q.e.d.
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