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Discrete arrays of Josephson junction elements differ from their continuum coun-
terparts in two essential ways: i) localized dynamic states in discrete arrays, which
are not present in the corresponding continuum system, can interact with other
excitations that are present; ii) fluxoid quantization for the non-superconducting

‘holes’ provides a constraint for discrete arrays that is not present in the corre-
sponding continuum system. The consequences of these effects in one-dimensional
systems are now beginning to be understood; in two-dimesional systems, on the
other hand, the picture is not yet altogether clear. Progress in fabrication technol-
ogy and potential applications in practical electronic devices — as well as intrinsic
interest in nonlinear dynamics — have contributed significantly to the growing

interest in these systems.

I. INTRODUCTION

Progress in thin film and photolithographic technology has permitted the construc-
tion of large one- and two-dimensional planar arrays of Josephson tunnel junctions hav-
ing rather precisely designed characteristics; simultaneously, the increasing availability
of computing power has permitted large-scale simulations of such arrays, even using
small desk-top machines. Planar Josephson junction arrays have attracted research in-
terest both because they display a rich variety of complicated nonlinear behaviors and
hence can serve as convenient model systems for studying, ¢.g., the magnetic behavior of
granular superconducting materials, properties of phase transitions in low-dimensional
systems, the interplay between coherence, chaos, pattern formation efc., in complex
systems, and also because of current or potential applications in practical electronic
devices, e.g., voltage standards, logic circuits, and millimeter-wave oscillators and am-
plifiers for radio astronomy and space-borne receivers. Although much can be intuited
about the behavior of discrete planar arrays from the behavior of the corresponding
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In this way we have obtained 2N first-order ordinary differential equations (ODEs) in
9N time-dependent variables (N phases and N voltages), which are just the Kirchhoff
circuit-law equations for an array of N discrete Josephson junction elements intercon-
nected via a parallel resistance/inductance combination. ,

Since Eqs. (3-6) have been obtained as an approximation to Egs. (1-2), it is rea-
sonable to ask to what extent the solutions of the ODE system will be a reasonable
approximation to the solutions of the PDE system. This question was explored numeri-
cally some years ago by Currie et al. [4], who showed that discreteness effects are small
as long as a < 1, but that as a — 1, they become appreciable. Following through the
normalizations employed in Egs. (1-6), it turns out that for a ~ 1, the ‘holes’ in the
discrete array are large enough to contain ~ 1 flux quantum, h/2e (h is Planck’s con-
stant and e the electron charge). Thus, a fluxon propagating through a discrete array
having @ < 1 feels the discreteness only as a slight ‘bumpiness in the road’, whereas
with @ ~ 1 it can become trapped in the potential well that is formed between adjacent
junctions, in the sense that it must acquire a certain minimum energy, the so-called
Peierls-Nabarro barrier energy, in order to proceed.

The numerical work of Currie et al. [4] showed that the shape of a fluxon propagat-
ing through a discrete array is modulated by the discreteness, thus giving rise to the
generation of small-amplitude oscillations. This mechanism was elucidated by Peyrard
and Kruskal [5], who proposed an analysis based on linearizing the equations for these
small oscillations and seeking stationary solutions of the linearized equations. Their
analysis succeeded remarkably in accounting for many of the salient features of the
observed numerical solutions of the full equations, in particular, the fact that a fluxon
propagating at certain well-defined velocities generates very little radiation and thus
propagates in a quasi-stationary manner, whereas at other velocities the radiation of
small-amplitude oscillations is large, causing a rapid deceleration of the fluxon. The
existence of special velocities for quasi-stationary propagation was given further numer-
ical underpinning by the work of Duncan et al. [6], who also gave further confirmation
to the suggestion of Peyrard and Kruskal [5] that this phenomenon is not peculiar to
Josephson junction arrays, but is present in many nonlinear lattice systems.

The idea of linearizing the equation for the small oscillations radiated by a modulated
fluxon was developed further by Ustinov et al. {7]. Their point of departure was the
observation that the dispersion relation for small-amplitude linear waves in a discrete
array is qualitatively different from that in the corresponding continuum system [8]. For
example, for Eq. (1) (with dissipative and energy-input terms set to zero and assuming
an infinite-length system), the dispersion relation is

Ew”w#.\nwu Aﬂv
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where w is the angular frequency and & is the wave number. For Eq. (4). instead, the
dispersion relation is
5 4 ., (ka
w =14+ —sin" | — ],
a 2
which coincides with Eq. (7) only in the limit @ — 0. From Eq. (8), Ustinov et al. E
calculated the phase velocity, w/k, for small-amplitude oscillations and found conditions
for resonant interactions with a propagating fluxon. Such superradiant, i.e. , Phase:
locked, interactions give rise to a series of sub-steps in the zero-field step that s.o:E mmm
present in the case of simple fluxon propagation. Although the analysis of Ustinov et gl
[7] was performed for an annular-geometry array, i.e., an array with periodic vo:zmw@
conditions in place of the finite boundary conditions of Eqs. (3) and (5), studies vw
Costabile and Sabatino and by Rotoli [9] showed that similar effects are present in array;
with finite boundary conditions, even though the phenomenon is rendered moBmérmak
more complicated by the effects Om reflections from the ends of the array. ’
As mentioned in the Introduction, much of the impetus for the study of uoﬁmwrmou.
Junction arrays has come from various practical electronic applications. Although I
cannot here delve deeply into this topic, perhaps it would be appropriate to Bszos.
briefly a few a these.
One of the most firmly established applications is that of the Josephson <o:..wmm.,
standard, which is based on the fact that the relation between the frequency of . a
microwave signal applied to a Josephson junction and the resulting voltage that appears
across its electrodes depends only on the fundamental quantity, 2e/h; this provides”
the possibility of generating voltages that are known to an extremely high degree om
precision. However, the voltages that can be obtained using a single junction are on’
the order of several millivolts, rather lower than the values of 1-10 V which would g
most convenient for 570585 use. For this reason, people have for a number of %mwﬂ
moved in the direction of employing series-biased arrays of thousands of junctions, a
idea which is practicable if and only if all of the individual junctions in the array can
be coherently phase locked to a single microwave source. The state of the art in thi
area has recently been reviewed by Niemeyer [10].
The Rapid Single Flux Quantum (RSFQ) family of logic %Snmn has begun to yaﬁmon .
a growing level of research attention in recent years because it offers substantial promise
for the realization of computing and other digital signal processing circuits operating at’
hundreds of GHz, at extremely low power-dissipation levels, and with comfortably 2&@
paranieter-margin tolerances. One of the basic elements 0m RSFQ circuits is the oné
dimensional array of small Josephson junctions used essentially as a transmission line -
[11]. Such arrays provide a convenient means for transfering SFQ pulses between active
elements, for amplifying the magnetic field energy connected with a flux quantum, for
EoSm_:m calibrated time delay, and, with appropriate bias currents, for generating mEm

injecting a train of SFQ into a circuit. Likharev [12] has recently reviewed the mos
recent achievements in this area. v

High-frequency amplifiers based on Josephson arrays have also been studied outside
of the RSFQ context. Particular attention has been dedicated to arrays of bridge-
type Josephson elements constructed by apprapriately patterning thin films of high-Té:
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superconductors. An indicative example of the performance features obtainable using
this technology is the SFFT (superconducting flux-flow transistor) amplifier described
by Martens et al. [13] at the 1992 Applied Superconductivity Conference: this device
showed a gain of 7 dB over a bandwidth of 50 GHz.

Millimeter-wave oscillators using Josephson arrays — both one- and two-dimen-
sional — continue to attract active research interest. A significant stimulus for the study
of Josephson millimeter-wave amplifiers and oscillators is undoubtedly the fact that
another Josephson element, the SIS (superconductor-insulator-superconductor) mixer
[14], is already firmly established as the best choice as a low-noise front-end detector
in the range from ~ 100 GHz to ~ 1 THz, since its intrinsic noise temperature seems
to limited only by fundamental quantum-uncertainty effects. Consequently, the idea
of a fully integrated superconducting receiver assumes considerable importance, espe-
cially for space-borne communications and radio-astronomical systems in which high
sensitivity and low weight and volume are crucial. The state of the art in the area of
Josephson-array millimeter-wave oscillators was reviewed a few years ago by Lukens
[15] and up-dated recently by Bi et al. [16].

III. TWO-DIMENSIONAL ARRAYS

The passage from a two-dimensional continuum system to the corresponding discrete
array is somewhat less transparent than the passage from Eqs. (1-2) to Eqs. (3-6): in
addition to the obvious choice of a square (or rectangular) array, one can also well
imagine two-dimensional arrays having, e.g.. a triangular or hexagonal unit cell [17].
Moreover. two-dimensional continuum systems have only recently (see, e.g., {18]) begun
to receive the detailed attention that has for years been dedicated one-dimensional
systems, so that acquired intuition provides us less help in this case.

Whatever the form of the unit cell, the condition of fluxoid quantization {19] imposes
that the relation between the sum of the phase differences across the junctions in a closed
loop and the fluxoid @ traversing the loop is given by

MU%‘ Iw._.MvW._.wa:" Aww
loop 0:

where n is an integer and ¥y = h/2e¢ is the flux quantum. The ratio ®/®; is known as

the frustration, f. Once the structure of the unit cell is defined, the Kirchhoff circuit

laws can be written in a fairly straightforward generalization of Eqs. (3-6). These,

together with Eq. (9), completely define the dynamics of the model.

The fluxoid & may be divided into two components. one due to an externally-
applied magnetic field perpendicular to the array and the other due to self-induced
fields stemming from both the self inductance of a given loop and the mutual inductance
between the given loop and its neighbors, i.c. ;

D =D+ Dina. (10)

There is not yet a universal agreement in the literature regarding the appropriate form
to use for the mutual-inductance contribution to ®;,4, even in the simplest case of a
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square array. There is some indication [20] that when f # 0 it may be a reasonable
approximation simply to neglect this contribution; on the other hand, at least whey
®er¢ = 0, it appears important to take into account at least nearest-neighbor mutual’
inductance terms [21]. The question certainly requires and deserves further study.
Although interest in two-dimensional arrays in fact dates back a number of years [22]
In connection with the analogy to the frustrated XY -model in spin glass theory, many
of the current experimental and numerical studies of such arrays have been dedicated
to understanding the dynamics associated with the fractional giant Shapiro steps first

reported by Benz et al. [23): constant-voltage steps in the dc current-voltage charac-

aoammnmnOmao+moo::mi-&?az w:m%m“5HWmcwmmm:nm0mm~:mnnmnmo=\H p/q, with'p
and ¢ relative primes, at average-voltage values given by e

V, = %Eeof (11)

where v is the frequency of the ac-current drive, M is the number of junctions in the
array along the current direction (an M x N rectangular array is assumed), and m WHE
g are integers. Detailed numerical simulations together with mechanical analog studies
(24] suggest that different dynamic mechanisms might be present in different regions
of parameter space. The question may possibly be further elucidated by using the
powerful technique of low temperature scanning electron microscopy (LTSEM), which
has already shown promising results for de-driven arrays [25]. Undoubtedly as these
studies progress, more complicated dynamical states, analogous, e.g., to the chaotic
states already observed in one-dimensional arrays [26], will be uncovered.

One of the ‘applications’ of two dimensional arrays that has stimulated research
activity in recent times is the uge of such an array as a model for a sample of high-
Te superconductor. Samples of these materials frequently have a granular structure;
one can consider such a sample to be a network of superconducting grains mutually
coupled to their nearest neighbors via Josephson junctions at their points of contact and
containing non-superconducting intergranular regions. A two-dimensional Josephson
array can be considered a reasonable model for a thin film of high-T, granular material
in a perpendicular magnetic field or for a cylindrically symmetric sample in a uniform
axial field. Study of such arrays has provided useful insight into the mechanism of
low-field magnetic penetration into high-T. samples [27]. For these studies, a correct
treatment of the mutual-inductance terms in the array assumes an important role [28].

IV. CONCLUSIONS

Research on one- and two-dimensional arrays of discrete Josephson elements is Eom.
ceeding apace, with new results emerging at a truly surprising rate. @csamgmuﬂm_
studies of nonlinear dynamics are proceeding hand in hand with practical electronic
applications. So far, one-dimensional arrays are undoubtedly more studied and bet-

ter understood than their two-dimensional cousins. Numerical simulation studies of -
two-dimensional arrays have outnumbered experimental measurements, and these ex-
perimental studies have been largely limited to systems based on overdamped, SNS-type .

Nonlinear dynamics in one and two dimensional AITays. .. 309

junctions, but the picture has already begun to change. I predict that this development
will continue for some time as researchers gradually acquire more powerful technolog-
ical and computational tools as well as a more solid physical intuition regarding the
complicated behavior of these systems.

Finally, I would like to mention in passing that — once again stimulated, or at least
facilitated, by progress in fabrication technology ~ in addition to planar arrays, the
topic of vertically-stacked junction arrays has recently begun to attract an increasing
amount of research attention [29]. Also in this case the use of such structures as model
systems, in this case for high-T, layered cuprate materials [30], together with potential
practical electronic applications [31], have provided much of the essential motivation.
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