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We review the properties of the self-organized critical forest-fire model. First,
we define critical exponents and scaling laws. In one dimension, we give the
exact values of the critical exponents including logarithmic corrections. In higher
dimensions, we present simulation results which confirm the scaling theory and
seem to agree with mean-field theory above 6 dimensions. We investigate the
universality of the critical exponents by changing the lattice symmetry in two
dimensions. The critical exponents remain unchanged. We also include immunity
against fire as a new parameter in the model. The asymptotic critical behavior
is still the same as long as the immunity is below a critical valne. Close to this
critical value, the system performs a crossover from percolation to self-organized
criticality.

1. Introduction

Some years ago, Bak, Tang, and Wiesenfeld introduced the sandpile model which evolves
into a critical state irrespective of initial conditions and without fine tuning of para-
meters [1]. Such systems are called self-organized critical (SOC) and exhibit power-law
correlations in space and time. The concept of SOC has attracted much interest since
it might explain the origin of fractal structurcs and 1/ f-noise. Other SOC models e.g.
for earthquakes [2. 3] or the evolution of populations {4, 5] have been introduced since
then. improving our understanding of the mechanisms leading to SOC.

In this paper, we review the properties of a forest-fire model which is SOC under
the condition that time scales are separated [6]. In one dimension, where the model
is still nontrivial. the exact values of the critical exponents have been calculated [7].
thus proving the criticality of the model. Critical exponents have been defined and
determined by computer simulations [6, 8. 9. 10, 11] The universality of the values of the
critical exponents is investigated by changing the lattice symmetry and by considering
the case of nonvanishing immunity [8, 12].
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The outline of the paper is as follows: In Sec. , the rules of the model are introduced

and the origin of the SOC behavior is explained. In Sec. , the scaling theory of the

model is presented. In Sec. , analytic results in 1 dimension and simulation results in 2
to 6 dimensions are given. Sec. investigates the universality of the critical exponents.

In the final section, the results are summarized and discussed.

2. The model

The forest—fire model is a stochastic cellular automaton which is defined on a d—-
dimensional hypercubic lattice with L4 sites. Each site is occupied by a tree, a burning-
tree, or it is empty. During one time step, the system is parallely updated according to {

the following rules
o burning tree — empty site
o tree — burning tree, if at least one nearest neighbor is burning

e tree — burning tree with probability f, if no neighbor is burning

e empty site — tree with probability p.

An even more general forest—fire model also contains an immunity {13, 14]. In its
original version, introduced by P. Bak, K. Chen, and C. Tang, the forest—fire model ~
contained only the tree growth parameter p [15]. This version of the model shows *
regular spiral-shaped fire fronts in the limit of slow tree growth (16, 17]. Throughout ;

this paper, we will assume that the system size L is Jarge enough such that no finite—size
effects occur. In the simulations, we have always chosen periodic boundary conditions

Starting with arbitrary initial conditions, the system approaches after a transition:

period a steady state the properties of which depend only on the parameter values.
Large-scale structures and therefore criticality can only occur when the ration f/p is
very small, since otherwise trees are destroyed by lightning before they become part of
large forest clusters. This condition is not yet sufficient to bring about critical behavior
in the forest—fire model. When lightning strikes a small forest cluster, it burns mo%u.
very fast, before any tree can grow at its edge. But when lightning strikes a large forest
cluster, it needs some time to burn down, and new trees might grow at the edge of E._m
cluster while it is still burning so that the fire is never extinguished. In order to observe:
critical, i.e. self-similar behavior, small and large forest clusters must burn down in the
same way. We therefore choose the tree growth rate p so small, that even the largest
forest cluster burns down, before new trees grow at its edge. In this case, the dynamics
of the system depend only on the ratio f/p, but not on f and p separately. When f
and p are both decreased by the same factor, the overall time scale of the system is also
changed by this factor, but not the number of trees that grow between two :mEn.Emm
and therefore not the size distribution of forest clusters and of fires. The condition that
forest clusters burn down rapidly can be written in the form e

p < T™ (smax),

where T(smax) is the time the fire needs to burn down a large forest cluster mum,
will be determined below (see Eq. (19)). The two above conditions represent

-
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Fig. 1. Snapshot of the SOC state in 2 dimensions. Trees are black, empty sites are white.
The parameters are L = 1000 and f/p =1/500.

separation of time scales
T(smax) < pt (2)

which causes SOC behavior in the forest—fire model. The time in which a forest cluster
burns down is much shorter than the time in which a tree grows, which again is much
shorter than the time between two lightning occurrences. Separation of time scales is
quite frequent in nature, while the tuning of parameters to a certain finite value only
takes place accidentally. Thus, the forest-fire model is critical over a wide range of
parameter values. A snapshot of the critical state is shown in Fig. 1.
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3. Scaling laws and critical exponents

In this section, we will derive scaling 1 1 iti :
, we srive scaling laws and relations between the critical ex ;
for the SOC forest—fire model. T,
M:.mﬁ we calculate the mean number 5 of trees that are destroyed by a :mgz.:_,
stroke. Let p be the mean forest density I j e
S sity in the steady state. During
ke, | y uring one time step,
foL*

lightning strokes in the systemn and

p(L - p)L?

growing trees. In the steady state, the number of growing trees equals the number of

—q u —.:m ~m~u. rees m_zﬁm —w@ eLore e mean nu 71 stroyec v~ a _.m nin £ MA
b3 t S { T ﬁ_ 1 t _ ca. m T ( ; trees ;@r € — _. _ ___ 1 m stroke
wm ‘ | |

b Ll—F

£ 3)
For m:.S.: values of f/p, the forest density p assumes a constant value. If this constant
value is less than 1. the second factor on the right-hand side of Eq. (3) is &m.o n,.o:mmmi‘“
for small f/p, and Eq. (3) then represents a power law

=

soc(F/p)7" (4)
In d > 2 dimensions, the critical forest density

Fe .\vwmo? (8),
in fact. must be less than 1, as the following consideration indicates: If the critical
forest density were p° = 1 in d > 2 dimensions, p would be very close to 1 m.o~. mEm:_
values of f/p. Then the largest forest cluster would contain a :om<m.:._mr._:m percenta a_ﬂ
of all trees in the system, and the average number § of trees burned by m r _\:s._.m ¥
stroke would diverge in the limit L — oo with fixed f/p, n n.o::.wm:n:o_ﬂmo _,mm mﬁwv MM
one dimension. there is no infinitely large forest cluster in the system as _m: g m_% A 1 ,
m.:a_‘ therefore the critical forest density is p° = 1. Nevertheless Eq. Ev :omwn_m...wnno...mm,
1 dimension since the forest density approaches its critical value o:_%. _omm._.:..::,&..o&_,%. !
m._o:‘_,(.. as will be shown helow. Eq. (4) indicates a critical point in the limit f/p — 0 )
Close to this critical point, i.e. if f < p, there is scaling over many o_.ﬁ_mw.m of Emm:?ﬂ%m N
Let n(s) be the mean number of forest clusters per unit volume consisting m 5 &
Then the mean forest density is g ot e

(897
p= snis),
1

and the mean number of trees destroyed by a lightning stroke is

§= MU s“n(s)/p.
1

Lt
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Since limg/u—op 15 finite and § diverges o (f/p)~ ", these equations imply that n(s)
decreases at least like 52 but not faster than s—3. As long as the system is not exactly
at the critical point f/p = 0, i.e. for nonvanishing f/p. there must be a cutofl in the
cluster size distribution for very large forest clusters. We conclude that [6]

n(s) x s~ TC(s/smax) (8)

with 2 < 7 <3 and
smax(f/p) < (flp) s (9)
The cutoff function C(z) 1s essentially constant for z <1 and decreases to zevo for large

z. Eqs. (T) - (9) yield 5 Sonax, Which leads to the scaling relation

A=1/(3-17). (10)

In the case T = 2, the right-hand side of Eq. (8) acquires a factor 1/ In(smax) and

reads now
n(s) & s~7C(s/smax)/ In(smax) ; (11)

since the forest density given by Eq. (6) must not diverge in the limit f /p — 0. The
mean number of forest clusters per unit volume 3.7 n(s), therefore, decreases 1o zero
for f/p — 0, and consequently the forest density approaches the value 1.

We also introduce the cluster radius R(s) which is the mean distance of the trees in
a cluster from their center of mass. It is related to the cluster size s by

s o R(s) (12)
with the fractal dimension ft.
The correlation length £ is defined by
2 nwvo .w‘;ﬂ.wv ) mmmAmv —2Afp
= ; 13
€= Same o ()
We conclude
€ o (f/p)~" with v=2Ap. (14)
In percolation theory, the hyperscaling relation
d=p(r—1) (15)

is satisfied, but it is not satisfied in the SOC forest—fire model in d = 2, as first stated
in [11], where also an interpretation of this relation is given: If Eq. (15) is satisfied.
every box of 14 > 1 sites contains a spanning piece of a large cluster when the system is
at the critical point. In the forest—fire model, there are at least in d = 2 many regions
which contain no large forest cluster (see Fig. 1.), and consequently d < p(7 — 1).

The mean forest density p approaches its critical value pf = iy p—o p via a power
law

o= (I (16)
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Finally, we introduce dynamical exponents characterizing the temporal behavior 6f .,
the fire. Let T(s) be the average time a cluster of size s needs to burn down when ;

the
AR

ignited, and N(T') the portion of fires that live exactly for T' time steps. Then
exponents b and ' are defined by

s o« T(s)* and N(T) o T°.

From

N(T)dT x sn(s)ds
follows the scaling relation :
b=p'(r—2)+1.
The time scale of the system is set by

!

Tmax = T(smax) « (f/p)”" with v’ = X/u'.

The dynamical critical exponent z is defined by

Tmax < MN“

which leads with (14) and (19) to

z=V'v=p/p. G&

The condition of time scale separation now can be expressed in terms of the critical
exponents and reads

(f/p)™ <Pt < (21)
or equivalently o
fep< e, (22)

. The average E.:dvmn N, (t) of trees that burn ¢ time steps after a cluster of size 8
me Amewcor by lightning enters the definition of the temporal fire-fire correlation function ,
. ;
G(r) o S a(s)s Y Ns(t)Ne(t+ 7). (23)

t=0 T

s=1

The power spectrum is the Fourier transform of the fire—fire correlation function
le o}
0

Gw) = w\ dr G(7) cos(wT) ox w™* for small w. Am@
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4. Values of the critical exponents in 1 to 6 dimensions

In this section, we determine the values of the critical exponents in 1 to 6 dimensions.
In one dimension, the critical exponents can be determined analytically, as was done in
[71. In higher dimensions one has to resort to computer simulations. Here, we shortcut
the exact evaluation of the critical exponents in d =1 by using simple arguments.

In one dimension, the critical forest density p° equals 1, since otherwise there were
no infinitely large forest cluster in the system. The consideration after Eq. (10) shows
ihat consequently 7 =2 and (via scaling relation Eq. (10)) A = 1. In the steady state,
the density of forest clusters S n(s) is constant, and therefore

[a 0]

Y on(s) = (- p—(F/P)0)2,

s=1

which leads together with Eq. (11) to
(1 - p) o 1/ In(smax)

and 1/86 = 0. One—dimensional forest clusters are compact, therefore = 1 and (with
Eq. (14)) v = 1. From T(s) o R(s) it follows w =v' =z=1. The exact calculation in
[7] yields additional logarithmic corrections:

smax x € « Tmax & (p/ )/ n(p/f)

The fourier transform of the temporal correlation function is [7]
G(w) x w™?(1 4 const. - In(wsmax)) (25)

indicating a deviation from the trivial w—2-dependence towards 1/w-noise. Tab. 1.
summarizes the values of the critical exponents. They are confirmed by our simulations.

We obtained the values of the critical exponents in d > 2 dimensions by computer
simulations using the same method as in [9]. The values of the critical exponents are
given in Tab. 1. They indicate that the SOC forest-fire model is likely to have an upper
critical dimension d. = 6, above which the critical exponents are identical with those
of mean—field—theory, which again is identical to the mean—field—theory of percolation.

5. Universality of the critical exponents

The critical behavior of a system usually depends only on properties as dimension
and conservation laws, but not on microscopic details. We therefore expect that the
critical exponents of the SOC forest—fire model are universal under certain changes of
the model rules. In [8], we repeated the 9D simulations on a triangular lattice and
on a square lattice with next-nearest—neighbor interaction. The simulations of both
variations of the model were done on a 4096 x 4096-lattice with f/p ranging from
1/1000 to 1/8000. We compared the exponents 7, [, @, v, v' and a with the results
given in Tab. 1. and found them to be exactly the same (see e.g. Fig. 2.).

Universal behavior is also observed when trees are allowed to be immune against

fire. We introduce an immunity ¢ and change rule 2 in the following way [12]:
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Table 1. Numerical results for the critical exponents in 110 6 dimensions (" = with logarithmic

corrections, | = calculated {rom scaling relations).
d 1 2 3 4 5 6 mean field
L 2701 16384 448 80 32 20
T 2 2.14(3) 2.23(3) 2.36(3) 2.45(3) 2.50(3) 2.5
A 1" ] 1.15(3) 1.30(6) 156(8)0 | 182010yt | 2.01(12)t | 2
i/6 | 00 | 0.48(2) 0.55(12) | - - - 1
p- 11 0.4081(7) | 0.2190(6) | 0.146(1) | 0.111(1) | 0.090(1)  1/(2d=1)
It 1 1.96(1) 2.51(3) 3.0 3.2(2) = 4
v 1 | 0.58 0523t | o533t | o7 | - 0.5
[ 1.89(3) 2.04(10) | 2.02(10) | 1.98(10) | 1.94(10) | 2
' 1* 1 0.58 0.64(6)" | 0.78(R)t | 0.92(10)! o411yt | 1
= 1 1o42)t | 1.24(3)t | 1.49(10)! 1.62(18)" | - 2
b 1 1.27(7)! 1.47(9! 1r310)t | 1Rt | roT(an)t | 2
a 2* | 1.72(5) 2.15(5) 2.00(5) 2.01(5) 1.95(10) | 2

400

200

000 2000 4000 8000

Fig. 2.The correlation length £ as function of (f/p)~'. The slope yields the critical mxvozmn.;

». (O = square lattice, A = triangular lattice, * = next—nearest-neighbour interaction.)

e tree — burning tree with probability 1 —g¢", if n nearest neighbors are burning. ;

When the inumunity assumes its critical value g, = 1/2, the model shows percolation-

like behavior. As long as the immunity is below its critical value, the asymptotic critical
exponents are the same as in the case of vanishing immunity, and the system performs

a universal crossover from percolation to self-organized criticality. In the following, we.

give plausible arguments and simulation results for this crossover behavior. i

When the immunity is different from 0. not all trees that are neighbors of a burning;
tree catch fire, and consequently the fire does no longer burn forest clusters but clusters -
of trees that are connected by non immune bonds. With increasing immunity, the forest.

density increases, since fewer trees are burnt. At the critical immunity g. = 1/2, the

eritical forest density is p° = 1. Then we have the following situation: The forest::
is cotpletely dense in the limit f/p — 0. and clusters that are destroyed by fire are.

P2
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Fig. 3. Crossover scaling function F(z) for the correlation length for different values of the
immunity. The dashed line represents F(0) as obtained at g = ¢..

percolation clusters of bond percolation. Consequently the exponents 7 and p given by
percolation theory: T{g.) = T. = Tperc = 187/91 ~ 2.05 and i(g.) = pte = ftperc =
91/48 ~1.90. When f/p is finite, there is a cutoff in cluster size, since large fires are
stopped by empty sites that have been left from earlier fires. The mean forest density
is no longer 1. We determined the critical exponents A. &, and v at g = g. by computer
simulations in d = 2 dimensions and ohtained A, = 0.92(3). 1/6. = 0.16(1). v, =

0.484(2). Since p° = 1, Eq. (4) has to be replaced by

monQ\E»:L\.fq (26)

and the scaling relation Eq. (10} by
A= (1= 1/6)/(3=7). (27)

When the immunity is just below its critical value ((g. — g) < 1), the situation
becomes more complicated. On length scales smaller than the percolation correlation
length &perc o (9. — g)'PerC a system close to the percolation threshold cannot he
distinguished from a system exactly at the percolation threshold. As long as f/p is so
large that the fires do not spread further than perc. the exponents are identical to those
at ¢ = g.. When f/p becomes very small. there are fires which spread further than
the percolation correlation length. These fires are stopped by empty sites that were
created by earlier fires. This is the same mechanism as in the limit g = 0: fires that
would spread indefinitely if there were no emply sites are stopped by empty sites. We
conclude that these large fires lead to the critical exponents A, v, and & that have been
observed for ¢ = 0. We make the following scaling ansatz for the correlation length:

G — Q o
: AR 28
(f/v)? (28)

It is plausible that the crossover from percolation-like to SOC behavior takes place when

€=U/

F/p becomes so small that the correlation length exceeds the percolation correlation



300 S. Clar et al

length, which suggests that the crossover exponent ¢ is

¢ = to\tumwa . Awwv, .

The scaling function F(z) is constant for small z and is o &(sec=v<)/? for large pas
Analogous scaling laws hold for smax and p¢ —p. We already mentioned above that
the critical forest density is p¢ = 1 at g.. We therefore expect an additional power law

1—p°(g) o (9. —9)"- (30)
The exponent y is obtained from the scaling ansatz :
ge =9 :
1—p=(f/p) G| |- 3
o= UM\ (foye 2

In the limit f/p — 0, the forest density becomes independent of f/p and mmm:EMm;‘mw
value p¢ # 1. Therefore G(z) £1/ %% for large z, yielding

Yy = tﬁmnO\tnmn . Aww,v

Our simulations confirm all these results. Fig. 3. shows the scaling function for the
correlation length F(z) for different values of g. —¢. The scaling ansatz Eq. (28)is
well confirmed since all curves coincide. The dashed line represents F(0) as obtained
from the simulations at g.. i

Thus, we have shown that the forest-fire model performs a crossover from percolation
to SOC when the immunity is close to its critical value. This crossover is characterized
by scaling functions which are defined in the same way as in crossover phenomena in
equilibrium phase transitions. .

Although all simulations were performed in d = 2 dimensions, we expect that this
crossover behavior can also be observed in higher dimensions. In d = 1, the critical . -
immunity is g. = 0, and no crossover can take place. For d > 6, simulations suggest
that the critical exponents assume their mean-field values which are identical to those.
of percolation [8, 10]. Consequently there is no crossover in d > 6 dimensions. i

6. Summary and discussion i

In this paper, we have reviewed the properties of the SOC forest—fire model. _,Epm
appropriate critical exponents were defined, and scaling relations between them were .

$

derived.
The critical exponents in one dimension, which are known exactly [7], were 8&013.&
by simple arguments. In dimensions > 2, computer simulations then determined the
values of the critical exponents and confirmed the scaling relations. . .
The simulations suggest that the critical exponents of the SOC forest—fire model in -
dimensions d > d. = 6 are given by its mean—field theory, which is identical with the
mean-field theory of percolation. o
Finally, we investigated the universality of the critical properties by changing the lat-
tice symmetry and by introducing the new parameter immunity. The critical mxwozonmm
turned out to be universal under these modifications.
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As already pointed out in earlier publications [13, 14, 8], there is a close relation-
ship between the forest—fire model and excitable media which comprise phenomena so
different as spreading of deseases, oscillating chemical reactions, ‘propagation of elec-
trical activity in neurons or heart muscles, and many more (For a review on excitable
systems see e.g. [18, 19]). These systems essentially have three states which are called
quiescent {corresponds to tree), excited (corresponds to burning tree), and refractory
Ano_.ammvonmm to empty site). Excitation spreads from one place to its neighbors if they
are quiescent. After excitation, a refractory site needs some time to recover its quiescent
state. In many of these systems, spiral-waves have been observed. We expect that a
SOC state can be found in some of these systems, if the appropriate range of parame-
ter values is investigated, i.e. if spontaneous excitation occurs rarely and if excitation
spreads much faster than the system recovers from the refractory state.

References

[1] P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).

[2] Z. Olami, H. J. S. Feder and K. Christensen, Phys. Rev. Lett. 68, 1244 (1992).
[3] K. Chen, P. Bak and S. P. Obukhov, Phys. Rev. A 43, 625 (1991).

[4] P. Bak, K. Chen, M. Creutz, Nature 342, 789 (1989).

{5] K. Sneppen, and P. Bak, Phys. Rev. Lett. 71, 4083 (1993).

[6] B. Drossel and F. Schwabl, Phys. Rev. Lett. 69, 1629 (1992).

[7] B. Drossel, 8. Clar, and F. Schwabl, Phys. Rev. Lett. 71, 3739 (1993).

[8] S. Clar, B. Drossel, and F. Schwabl, to be published.

[9] P. Grassberger, J. Phys. A 26, 2081 (1993).
[10] K. Christensen, H. Flyvberg, and Z. Olami, Phys. Rev. Lett. 71, 2737 (1993).
[11] C. L. Henley, Phys. Rev. Lett. 71, 2741 (1993).
[12] B. Drossel, S. Clar, and F. Schwabl, to be published.
[13] B. Drossel and F. Schwabl, Physica A 199, 183 (1993).
{14] B. Drossel and F. Schwabl, to be published in Physica A (1994).
[15] P. Bak, K. Chen and C. Tang, Phys. Lett. A 147, 297 (1990).

[16] P. Grassberger and H. Kantz, J. Stat. Phys. 63, 685 (1991).

[17] W. MoSBner, B. Drossel, and F. Schwabl, Physica A 190, 205 {1992).
(18] J. . Tyson and J. P. Keener, Physica D 32, 327 (1988).

{19] E. Meron, Phys. Rep. 218, 1 (1992).



