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Based on the laws of mass action between monomers and small neutral clusters
(dimers, trimers, ...), the concentration of these clusters is calculated for dense
alkali metal vapours as function of temperature and density. The laws of mass
action are evaluated in simple approximations where the influence of interaction
corrections to the ideal gas behaviour as well as the inclusion of internal degrees of
freedom is studied. Explicit calculations are performed for dense cesium vapour.
Solving the respective equation of state and investigating the stability behaviour,
the gas-liquid phase transition is already described. The estimates for the critical
point deviate from the respective experimental data. The present simple model
has to be improved by considering also the ionization equilibrium and further
interaction corrections to the thermodynamic functions.

1. Introduction

Precise measurements of the thermodynamic, electrical, and magnetic properties
including the exact location of the critical point (e.g. for Cs: T,=1924 K, p.=92.5 bar,
p.=0.38 g/cm®) are available for fluid alkali metals over the whole liquid-vapour coex-
istence range [1, 2. The data clearly demonstrate that drastic changes of the electronic
properties occur from phase to phase. While the liquid phase is highly conducting, the
vapour phase is insulating far below the critical point. The distinctions between the
coexisting phases vanish near to the liquid-vapour critical point and both phases show
a non-metallic behaviour. For instance, the corresponding metal-non-metal transition
for Cs is located at the critical point of the liquid-vapour phase transition.

1t is generally accepted that the two limiting cases of the dense liquid metal and
the low-density vapour phase are reasonably well understood. However, a theoretical
description of the whole liquid-vapour coexistence curve has also to treat the electronic
transition near the critical point. The connection between these limits through the
critical point of the phase diagram has been performed within simplified models [3, 4].
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A ::.:o—wm treatment has to include both limiting cases, van der Waals and metalli
vo:%:m,. and their interplay as function of density and temperature 5, 6]. a

mﬁ:ﬁ._sm from the low-density vapour, atoms C's are the elementary constituents fo
a statistical description. Distinct deviations from a strictly atomic behaviour have vomh
observed for the compressibility [7] and the magnetic susceptibility {2] of dense cesium
vapour. Estimates based on Saha equations for an ideal gas show that small neutral
a_cmnmu.m such as dimers C'ss and trimers Cs3 may occur in considerable concentrations
[8]. It is the aim of the present paper to study the influence of non-ideality corrections to
ﬁr.omo mwrm equations within simple models and to include the internal degrees of freedom
(vibration, rotation) to the partition functions of these clusters. These corrections
become more pronounced for the dense vapour region near the critical point.

2. Ideal Saha equations

The thermodynamic state of a system can be defined by means of the density of
the ?ow energy f = F/V, where F and V denote the free energy and the volume
.vaooﬁ:\o;. For an ideal gas of particles having mass m, the density of the free ener v
is given by &

fia = nkpT(In(nX?/Z) — 1], (1)

2 2 <
swrmnw A = 27h \Azinmﬂv is the thermal wave length, and Z is the internal parti-
tion function. The equation for the chemical potential as function of the density and
temperature,

Hid = \nm\.ﬂ—smﬁym\N_ 5 AMV
is obtained from the relation p = §f/én. .

In thermodynamic equilibrium, the chemical potentials of the reacting species are
m@:.w_. .Zmﬁﬁ.m_ clusters can be described as bound states of atoms characterized by
a gz.%:m energy .m..... Interaction corrections between monomers and clusters can be
described vx a pair potential V;;(r) via, e.g., virial coefficients. , »

a.\<o consider first the reaction between monomers (M) in the low-density vapour
leading to the formation of dimers (D), :

2Cs = (Csq, va
for which the chemical potentials fulfil the relation:
Ep+up= 2pm. TO
Mu p is the dissociation energy of dimers. The ideal law of mass action is then mmmnlvom
Yy

np 3 '
= V83, exp(—BEDp). (5)
M
Oo:.maolsm also further reactions such as the formation of trimers, we have to
determine two reaction constants in the system simultaneously:

2Cs = Csq , Q.wm:TQm”Q.mw‘ Amv

[RRY
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For the chemical potentials, we find the relations
ns = pip + Ep o o+ pm = 47 ¥ Er, (7N

with the binding energies Er and Ep. The respective law of mass action for the trimer

reads now: i
DT VAN exp (-BLED + Er)) - (®)
M

3. Internal degrees of freedom

The internal partition functions Z of the various constituents include, besides the
spin and electronic degrees of freedom considered so far, also further contributions. For
instance, molecules consisting of two atoms can be described by a dumbbell model,
see Fig. 1. In addition, vibrational and rotational modes contribute to the partition

function.

vibration rotation
i

Fig. 1. Internal degrees of freedom for a Fig. 2. Main vibration modes for a trimer.

dimer within the dumbbell model.

Usually, the various internal degrees of freedom are separated. For the law of mass
action for the dimers, Eq. (5), then follows:

MW =V8X3, SGA\QNUVQ%QE“QS@ . (9)
The internal degrees of freedom can be expressed by [9]:

g™ = Bhe/Bm . (10)

where By, is the characteristic rotational temperature, and
i = [ — exp(~wm /B, (11)

where wy, is the characteristic vibrational frequency of the cluster, h is Planck’s con-
stant, and ¢ is the speed of light. P denotes the spin degree of freedom. For a dimer,
we have o°F = 1/2, whereas for a trimer o*? = 1 follows.

For a trimer, a modified spectrum of internal degrees of freedom applies. Especially,

three main modes for vibration with corresponding frequencies are found, see Fig. 2.



D). Labudde et a]

For the law of mass action for the trimer, Eq. (8). then follows: o
T 556 i i
= VTS, exp (= Ep + Br)) oo™ [ o™

2=
4. Interaction corrections

~ . (1ens ; .3 -~ ,. § .

b a de :u” vapour, interaction corrections to the equation of state as well as to the
mass acl ; : ; i - state as

action laws become of importance which can be treated by consistent 2—53:&0

statistical methods [10]. In a simplified description, the density of the free m:mnm%,ww. :

.w lwu:uw% of wwc:.m,_ particles can be separated into an ideal and an interaction part
= fid 4 fint_ These non-ideality corrections can then be introduced formally im

mtera P ﬁ. : mic pe P
= 1€ 3 muOn n wNF( & m\ € .
te A CLIC :, i arts of the A._—ﬁ N— ent S an ;0 W_:— on :~® /m:—c:m NHR— _ Aw zmﬂﬂ—ﬂm

— id ,
i = 0+ Dy Bpg = Bpgg(ng . ng) (13)
The partial density of dimers, Eq. (5). is then given by
1 _ ,
np = ..|Q2‘_Q.~:~\QL.S ;
D (14
x exp [32uid — Ep + 28puar(np.nar) — Dup(np.ny))]

and has to be calculated selfconsis ] .
> ca ted selfconsistently dependent on the t lensity .
potaLEEe i Yy dep e total density and the tem-

: V—u
Fo, = hn E +3Fp —1 sp vib _rot
58 |+ 950 - i ter a

+ 3[Aup(np.na) —20ps(np,nu)) = 0.

The interaction part of the density of the free energy for a system oo:mwmﬁmm:&f

neutral particles can be split into the contributions [11].

F7 = foaw + fac (16)

where [, lescri N rane : .
jere ..\::c describes the long-range attractive forces between neutrals (van der Waals
correc < . —— ks - - ; STk
:_.:._c:uf. :._5_?? fre denotes the short-range repulsive forces due to the Pauli
ex ar 3

-xclusion principle (hard core corrections). The van der Waals term f,qw 18 calculated *

within a virial expansion,

foaw = ninjkpT By (T), . G.ﬂv ;,
taking into account only the second virial coefficient: ) 5 .,
" 4
Bij =27 ’ [t — exp(—3Vi; (7)) ridr.
DAY

For the caleulation of the virial coefficients. we utilize the .m:::E_m_?_-_voﬁmzawﬁ.ﬁw_e

Hr<o
fr>o0o
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Tab. 1. Parameters for the calculation of (he laws ol mass action, Eqs. (22) and (12}, for
dimers and trimers. E,: binding energy, R: atomic radius, d: equilibrium distance in dimers,
“e: van der Waals constant.

Bum: rotational temperature, Wm: vibrational frequencies,

E, (in eV) -0.394 -0.352
R (in nm) . = -

d (in nm) 0.461 s
B, {in 1/cm) 0.0127 0.0125

wm (in 1/cm) 42.02 | 43.0, 20,0, 13.0
Ce {in Ryd/a%) s

The second virial coefficient is then given analytically by

oc

.Ns.\Za‘u pw Qm g.
= — ol .N
B(T) = T2 |1 > 57 o) | AS

j=1

The parameters for the Sutherland potential between ('s atoms are given in table L.
where o is identified with the atomic radius R. The virial coefficients for the interaction
between atoms and dimers-Barp. as well as between dimers Bpp. can be derived from
that for the atoms, Baras . via London's refation [9] which vields [12]:

Byp = 0.45Bym . Bop = 0.40Baras - (21)

For the hard core term, analytic expressions are known for the case of a imonoatomic
fluid [13] as well as for mixtures [14]. We have atilized the latter expression and have,
therefore, to determine the various hard core radii R;. These data can be found again
in table 1, where the effective hard core radii for the dimer (and. in principle, also for
the trimer) can be calculated from the atomic radius and the equilibrium distances in
these clusters. The detailed expressions for g are given elsewhere [15].

Making the different interaction corrections explicit. the following equation is derived
from (15):

Fo = C+2 ?.bmbcﬁjv — 203y Barar (1) (22)

+ Bup(T)nm —2up)+ BulC —2uif = 0.

5. Results and discussion

Within this simple model, we have calculated the equilibrium distribution of monomers.
dimers, and trimers for fixed temperatures dependent on the total density for a dense.

low-temperature cesium vapour. The respective parameters needed for the evaluation
of Eqgs. (22) and (12) are given in table 1.
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The results for the composition are shown in Fig. 3 for densities up to 1027 particles
per m®. The number of dimers increases with density. For higher temperatures, the
concentration of dimers becomes less pronounced. The concentration of trimers can
be neglected within this simple approach contrary to earlier results in [8]. At higher.

densities, non-ideality corrections cause a slightly non-linear behaviour.

mew to the experimetally determined critical isotherm (Fig. 3c), the &n:mm..oo.,u_
centration amounts about 25%. From the measurements of the magnetic susceptibility:
[2], a dimer concentration of about 20% can be deduced. This ratio has been o

firmed recently within a quantum statistical calculation for the equation of state and

e,
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the magnetic susceptibility 12].

The effect of including the internal degrees of freedom for the dimer and trimer is
considerable when calculating their equilibrium concentrations. Neglecting the vibra-
tional and rotational modes, the concentration of dimers and trimers is too small by a
factor of about 10* and 109, respectively, and the vapour would be purely atomic.

The model system considered here shows already a thermodynamic instability. The
region of this phase transition can be extracted from the stability criterion for the
chemical potential, ép/én > 0. As a special characteristic of the phase diagram, the
critical point of this vapour-liquid phase transition is located at a critical temperature
of T.=780 K and a critical density of 1,=8.3 x 10%" m~>. There, 2 concentration of
82% dimers and 18% monomers follows within our model.

In order to give an estimate for the influence of clusters, we compare these results
with those for the pure systems of only monomers or dimers. We obtain the values
T.=5950 K for the system of monomers, and T.=605 K for the system of dimers. The
calculated value for the critical temperature lies between the data for the pure systems
as expected. The result for the pure atomic system lies far above the measured value
for the critical temperature, whereas the result for the pure molecular system is too
small. However, this value coincides with a result of T —896 K for molecular Ja which
was obtained from a simple van der Waals equation of state which takes into account
hard sphere correction terms {16].

Taking into account a more realistic potential for the Csy — Cs2 interaction, the
theoretical result for the critical temperature is in better agreement with the measured
value, T,=2325 K [17]. Furthermore, excited states of the cesium dimers are predicted
which are not included in our simple model.

The critical temperature of the gas-liquid phase transition within the present simple
model of a neutral gas consisting of only monomers, dimers, and trimers is too small
compared with the experimental value of 1925 K [1]. The inclusion of the lonization
equilibrium, i.e. the possibility of excitation of internal degrees of freedom, and the
subsequent treatment of non-ideality corrections due to charges yields a better agree-
ment with the experimental values as shown for the alkali-atom metals [] as well as
for mercury [18].

The critical pressures and densities are strongly affected by a variation of the hard
core radii. Therefore, these parameters have to be derived from a more general micro-
scopic treatment of the short-range interaction between atoms as given, for instance, in

[19].
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