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NUCLEATION UNDER DIFFERENT BOUNDARY CONDITION!
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Based on the canonical ensemble the thermodynamic state function F(T,V,N)
in dependence of the cluster distribution N and the thermodynamic parameters
(fixed temperature T and volume V) is calculated. Comparing with other situa-
tions of different boundary conditions (e.g. fixed energy U in the isoenergetic case)
the extrema of the state function in the high dimensional space of independent
variables are evaluated.

1. Introduction

The scenario of first-order phase transitions is of great interest in experimental and
theoretical disciplines of physics [1]. If we consider a vapour at equilibrium then a
certain change of the thermodynamic parameters is able to remove the system into a
nonequilibrium state. The vapour becomes supersaturated and a phase transition by
homogeneous nucleation can occur in the system.

The basic quantity describing the situation is the cluster distribution N at time ¢

N(t) = (N1, Na, ..., Ny, ..., NN)

which gives the number of clusters N, of size n. The free particles (molecules) are
called monomers of size n = 1. The bound states are clusters of size n > 2.
Investigating a finite system the overall number of particles is fixed. The boundary

condition
N

My = MU nN,, = const
n=1
holds taking into account that the particles are either free or bounded in clusters.
Concerning the other thermodynamic boundary conditions we can choose different sit-
uations which correspond to the respective thermodynamic potential. The following
situations are of interest
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2. Canonical Ensemble

Our system is gi T
reads ystem 1s given by the cluster distribution N. The total Hamiltonian H(N)
N
Wey s,
n=1

with the ¢ i i s ;
ﬁb: e contribution H,, for the N,, clusters of size n at coordinates r
13

(n

i

) and momentum

. b
(1)
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The mass 3&3 of a cluster containing n monomers is given by
m™ =m, =nm
i = Mn =

where m is the mass of one monomer.
The canonical partition function consists of an ideal part due to the kinetic energy

N N.
yNe 3N,
Zideat(T, V,N) = N Th3NA A Mﬂﬁ::\nﬂv
n=1"""

and a second term Zpinding(T, V, N) due to the energy stored in the cluster. Both terms

together read
Nn

N N. 3
2 vy =TT ¥ A nmn kT mwa|Fv

N,! h kT

n=1

where the binding energy fn(T) is the minimum value of the potential energy averaged
over all spatial arrangements of the n bounded monomers

fo(T) = miny U™ (s — x51) -
i<
From the canonical partition function we can calculate the thermodynamic quantities
using the relation
F(T,V,N)=—kT n Z(T,V,N) .

3. Isothermal-Isochoric Situation

State function: Free energy F(T,V,N)

n=1

N N
F(T,V,N) = kT > Ny [In(Au(T)°Na/V) ~ 1] + > Nafa(T)

with Au(T) = n=Y/2Ay(T) = n~Y/2 (h?/(2xmkT))"/*. By derivation of the state func-
tion we get the following quantities:

e Pressure

p(T,V,N) = — (dF/dV) |, N = kTNo/V

with No = 30_ | Ny,

o Entropy
N : N
oF ) AT N, of (T
S(T,V,N) = — Amlﬂ.v lv N = kYN, T —1In AAIﬁ\V.Iv_ -~ Muzzlﬂﬂb
n=1 n=1
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o Chemical potential

(T, V,N) = (OF/ONw) gy Nun, = kT I (A (TP No/V) + fu(T)

¢ Internal energy

U(T,V,N) = F(T,V,N)+TS(T,V,N)
= W:S +M2; T;S - mw%ﬁ
o Free enthalpy
G(T,V,N) = F(T,V,N)+Vp(T,V,N)
= Sﬂ V,N) — TS(T,V,N) + SAH V,N)
- :Mz_s T) N, /V) +MU2?
n=1

= M Ny pan (T, V,N)

n=1

e Enthalpy

H(T,V,N) = U(T,V,N) + Vp(T,V,N) = Lﬁé rS M N, ?5 2;5

—~ aT
o Specific heat
ev(T,V,N) = (8U/dT) :.z?i%@%a:z
3 9 (T
= T(S/dT) |y N = mténﬂMUz Mﬂmv

n=1

4. Isothermal-Isobaric Situation

State function: Free enthalpy G(T', p, N) From G(T' V, N) = F(T,V,N)+Vp(T,V,N)

follows with V(T,p, N} = kT'Ny/p G(T, p, N) = F(T.V(T,p, N),N)+pV(T, p,N), and
the final state function reads

G(T,p,N) SJM” Au(T)? Nup MU '
NQ = \<: ~: bMJZ >:\\,-ANJ
0

n=1 n=1

with A\, (T) = :!H\m\/;ﬂv _

tion we get

n-1/2 A\N.N\Awq::»ﬂvv(m and Ny = MU

n=1

L]

Chemical potential

Internal energy

.

e Specific heat

N,,. After deriva-
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V(T,p,N) = —(0G/0p) Iy N = kTNgo/p

iAmQ\mHv_ N

B fon (B -

1l

(8G/ONw) Ir p NzN.,

V:Aﬂvw\/\:wv IZl# T
- \nﬂ?Al@a\ +1 N, + fo(T)

= G(T,p,N)+TS(T,p,N) - pV(T,p,N)

il Of(T
- Wﬁzo +M2= T;E =T mw ;

QGJ p,N) —pV(T,p,N)
7 \.NJ W‘Zﬂw 2
»ﬂMU N T: A\/ Mnﬁvzo @v - ; + 3 NofulT)

n=1

H(T,p,N) = U(T,V,N)+pV(T,p.N)

s afn(T
- WgzoLnM'wzz TiﬂTﬂ \mw ;

= (9H/IT)|,N = |2%QEE LN

& fu(T)
= T(3S/OT)|,N = L;anﬂm N5
n=1
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5. Temperature Dependencies

The negative binding energies fn(T) for each cluster size have to be i

empirically. Using the well-known Bethe—Weizsicker ansatz neroduced

Fa(T) = poo (T n + 0 A,

with the surface of a size-n—cluster

Ap = (codm/3) 32 n2/3

indicating volume and surface contributions we take this formula valid for cluster sizes |

n>2 NSQ. J1(T") = 0 for isolated monomers.
The chemical potential of a monomer over a flat surface is

too(T) = kT In (M (T)3c.q(T))

HT@ @Q;—:—g:.:z OOEO@SHHNALOE Ce HNJ 1S OOH—ﬂOOﬂ@Q Snﬁr ATO OQ‘.::—V um CN\CC I _v e
A v QA v T u Tessur

kT

Therefore we get the following temperature derivative

WMHH aTool_rD@ J

8T kT 2

cay(T) = 22D

6. Isoenergetic-Isochoric Situation

State Function: Entropy S(U, V, N). From the caloric state equation U = U(T' V, Zv

we get by transformation T = T(U, V, N) which h i i
the final state function S(U, V, H/AJM LTS 0 be mmeter i 2,7, N tefnd

S(U,V,N)Jk = Tzo + mi In A U o L A0 M.
2 2 kT (3No/24 5M, /2)
5 5 A
+2No+ |2 - P — 28
51Vo Ex T In (A(Tp) co) kﬂL M,
N
_ M Ny In (A (Tg)* Na/ V)
n=1 s
with the initial temperature
T, = 2Uq
3k M,

The abbreviations are the total number of clusters including monomers

i _
Ny = Muz q

n=]
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Fig. 2. Area bistability with the thermodynamic function S = S(U,V, N) (the inner energy U
is replaced by T').

the total cluster surface

and the total number of monomers bounded in clusters

N
EQ”MBZ:.
n=2

7. Results

In the framework of thermodynamics the question of nucleation is connected with the
calculation of extrema of the thermodynamic potential. The search of these states of
stable or unstable equilibrium, for example of the free energy F = F(T,V,N), can be
done by changing the cluster distribution N via reactive collisions. The monomer -
cluster — reactions Nj + Np < Nn41 (formation and dissolution of clusters by one
monomer) are the most important reaction channels.

Starting with My monomers the system looks like a gas or vapour as the one—phase-
state. The vapour is changed to a supersaturated state by quenching (undercooling).
Just at that moment the system is in a metastable state. This is our initial situation.
By nucleation in the forming of clusters the system changes to a two-phase-state, where
the liquid (one big cluster) is in equilibrium with the surrounding gas. The state of
equilibrium in this system corresponds to the minimum of the free energy function

N (A
EHSZVHEJML;??C;Swzz\SL_+M.5§§

=l n=l

with
frn = poo(T)n+ A, .
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The temperature T, the volume V amd the total particle number M; are fixed. We get
the following results:

= V=19-10"m3
- My = 15000 particles

| temperature [K] | equilibrium distribution [ free energy ]
293 Ny = 1388 and Nyge1o =1 | F = —275913.52 kT
300 >\H = 2185 and Zwmmu.m = 1 = I.Mﬂomwﬂww kT

These considerations are possible for the entropy S = S(U, V,N) too.

Figure 2 shows the area of bistability where the thermodynamic function has two ex-
trema which correspond to the only—small-clusters—situation and the one-big-droplet-
situation. In dependence of the boundary conditions the monostable case without nu-
cleation to the new cluster state is more probable.

8. Conclusions

To study the dynamics of the nucleation process it is necessary to investigate the
landscape of the thermodynamic state function, e.g. entropy, in the high dimensional
space of independent variables (inner energy U, volume V| cluster distribution N).
The maximum of S(U, V, N) corresponds to the equilibrium situation. In some region
of the I/~V-My-space we find two maxima of S divided by a saddle point (bistability).
One distribution N consists of a number of small clusters (vapour phase), the other
distribution N consists of one big cluster accompanied by few small clusters (liquid
phase). -
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