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Phase transitions in adsorbed (two dimensional) fluids and in adsorbed layers of
linear molecules are studied with a combination of path integral Monte Carlo
(PIMC), Gibbs ensemble Monte Carlo and finite size scaling techniques. For a
classical (non additive) hard disc fluid the “critical” non-additivities, where the
entropy driven phase separations set in, are presented. For a fluid with internal
quantum states the gas-liquid coexistence region, tricritical- and triple points can
be determined, a comparison with density functional (DFT) results shows good
agreement for the freezing densities. Linear N2 molecules adsorbed on graphite
(in the V3 x /3 structure) show a transition from a high temperature phase to
a low temperature phase with herringboneordering of the orientational degrees of
freedom. The order of the transition is determined in the anisotropic planar rotor
model by analysis of the correlation length & near the transition temperature
To. The simulation data, extrapolated to To, yield a large but finite £ at Tp

" demonstrating that the herringbone ordering is a weak first order transition. The
effect of quantum fluctuations on the herringbone transition is quantified by PIMC

" and classical simulational methods. Quasiclassical and quasiharmonic calculations
agree for high and low temperatures, respectively, but only PIMC gives satisfactory
results over the entire temperature range. Rounding effects of the phase transition
in adsorbed layers of (N2), (CO)i_, for £ < 7% are analyzed by Monte Carlo
methods, the ground mgom.o&mlzm for the transition in the adsorbed pure CO
system is discussed, using ab initio potentials.

I. Introduction

Two dimensional (2D) layers at surfaces have become an interesting field of research
during the last decade [1, 2, 3]. Most of the phase transitions in these systems occur at
fairly low temperatures, and for many aspects of the behavior, quantum effects need to
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be considered. This holds in particular if one is concerned with adsorbed molecules at
surfaces, since the molecules have internal degrees of freedom which need to be treated
quantum - mechanically even if the translational degrees of freedom can still be treated
classically.

In section II we study the properties of model fluids in two spatial dimensions with
Gibbs ensemble Monte Carlo (GEMC) techniques. In particular in section II A we -
study the entropy driven phase separation in case of a nonadditive symmetric hard
disc fluid and locate by a combination of GEMC with finite size scaling techniques the
critical line of nonadditivities as a function of the system density, which separates the
mixing/demixing regions, we compare with a simple approximation. In section II B
we successfully combine path integral Monte Carlo (PIMC) and GEMC techniques in
order to locate the gas-liquid coexistence densities for a fluid with classical degrees of
freedom and internal quantum states, a comparison with NVT-ensemble results and
mean field predictions is presented, in section II C a density functional approach is
outlined. Linear Ny molecules adsorbed on graphite (in the v/3 x /3 structure) show
a transition from a high temperature phase to a low temperature phase with herring-
bone ordering of the orientational degrees of freedom. In section IIT A the order of the
transition is determined in the anisotropic planar rotor model by analysis of the corre-
lation length £ near the transition temperature Ty. The simulation data, extrapolated
to To, yield a large but finite £ at Ty demonstrating that the herringbone ordering is
a weak first order transition. In section III B the effect of quantum fluctuations on
the herringbone transition is quantified by PIMC and classical simulational methods.
Quasiclassical and quasiharmonic calculations agree for high and low temperatures, re-
spectively, but only PIMC gives satisfactory results over the entire temperature range.
In section IV the random-field-induced rounding of the Ising—type transition in ph-
ysisorbed (CO);_z(N3), mixtures is studied. Good qualitative agreement with recent
experiments is obtained with a simple model. Summarizing conclusions are given in
section V.

IT. Phase Transitions in Classical and Quantum Two-dimensional Fluids

A. Phase Transitions in Nonadditive Symmetric Hard Disc Fluids

. Phase transitions in systems with purely repulsive interaction have got much atten-
tion recently [4]. In this section we consider a system of hard discs (of diameter d) with
N4 particles of type A and Ng particles of type B and interaction potential:

voa={ 0 2 b o)

0o 1 riz < dsys,

712 is the distance of two particles, 51,52 € {A, B} are their species and dq4 = dgp =d
dap = d+ A/2. The total number of particles N and the total volume V is fixed and
thus the average density p* = p*d? = Nd?/V. Due to the additional repulsion between
A and B- type particles we expect a phase separation into a A-rich and a B-rich fluid:

Adsorbed Monolayers: Phase Transitions and Quantum Effects 247

Table 1. Critical line for nonadditive hard discs obtained by the cumulant intersection method.
For the largest values of A the critical density pZ was found by density variation, the smallest
critical values of A, were obtained for fixed density.

pe Ac/d
0.6 0.562 +0.04
0.55 0.66 £ 0.01
0.5 0.789 £ 0.01
0.499 + 0.01 685
0.5+ 0.02 0.9
0.508 £ 0.03 0.95
0.46 £ 0.02 1

phase for large values of A > A, and fixed total density. For A = 0 we have a pure
hard disc fluid with no phase separation in the fluid phase. In order to locate the
critical values A, as a function of p* we perform GEMC simulations [5]. Since the
phase separation is driven by entropy we expect only a small interfacial free energy in
case of phase coexistence. In order to be able to locate the critical points even in such
extreme situations we combine the GEMC with the block analysis finite size scaling
techniques [5]. The GEMC results [7, 8] were obtained with N=512 particles and about
106 Monte Carlo steps, where each step consisted of 400 attempted moves, 20 particle
exchange and 2 volume change attempts. Cell occupancy lists were successfully used to
speed up the procedure, the overall computing time for was about 4300 CPU hours on
RISC 6000/250 workstations.

In order to get a rough idea about the critical line I, defined by p7(A.) we computed
I, in analogy to a study in three dimensions [9] by convex envelope arguments for the
free energy and arrive at the compact expression:

4 A
AN = — [ 1]/ — 2
pi(A) =~ = @)

The critical points were obtained by inspection of number-difference histograms
Pr(Na — Np) on different length scales L obtained by subdivision of the simulation
boxes of sizes Vi and Vs (V; +V, = V) into smaller subsystems of size L x L. For A< A,
the distributions are all singly peaked, for larger A we obtain a single peak structure
of PL(N4 — Ng) for large L and a double peak structure for small L. An analysis of
these histograms with the cumulants U, = 1— < (NA=Ng)t>p /3< (Na— Ng)? >%
allows a determination of critical points, due to the cumulants L- invariance at the
critical point. The GEMC results for the critical line are presented in table 1. Similarly
to the prediction of eq.(2) p. is a decreasing function of A, however at a given density
the GEMC results for A, are about 20% larger than the predictions of eq.(2).

B. Path Integral Monte Carlo Simulations in the Gibbs Ensemble

In this section we present results of a novel combination of GEMC and path inte-
gral Monte Carlo simulation techniques [7, 10]. In particular we study the gas-liquid
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Table 2. Gas-liquid coexistence densities of the two-dimensional fiuid with internal quantum
states versus temperature. Comparison of Gibbs ensemble Monte Carlo results with those of
an NVT- ensemble simulation and mean field predictions.

T* Gibbs- MC | NVT- MC [12] | Mean Field

g ol g oL Py ol

0.35 { 0.139 | 0.739 { 0.174 | 0.711 | 0.198 | 0.762
0.4 | 0196 | 0.715 | 0.232 | 0.659 | 0.240 | 0.744
0.45 | 0.265 | 0.685 | 0.298 | 0.639 | 0.276 | 0.726
0.5 0.323 | 0.633 | 0.341 0.576 0.3 0.702
0.55 | 0.376 | 0.521 | 0.399 | 0.506 | 0.324 | 0.684

transition of a model fluid with internal quantum states. The Hamiltonian is given by:

N
HMUM Mq + Y U(ry) =Y J(rij)oios (3)

i<j i<j
M is the particle mass, p; is the momentum of particle i, r;; is the distance between
particle i and j, 0” and o are the usual Pauli spin - 1/2 matrices. The potential energy
consists of a one-particle (two-level) part wg/2 and two pair interaction terms U(r) and
J(r), where U is a hard disc potential for particles with diameter d and J(r) = J for
d < r < 1.5d and zero elsewhere. For motivation and literature background for these
type of models see refs. [11, 12]. In the adiabatic approximation (large M) we assume
a separation of time scales for the translational degrees of freedom and the internal
quantum states. An application of the Trotter formula results in the following expres-

sion [7, 10, : 12] for the partition function Zn, w7 = limp_.o, Zp at 35@9.3:8
=(BJ)1 2;:

AT
Zp(B, N1, V1) = N \&E A\&Ef exp [— MQT.:
i<y

xMUSG QMMU >m..w.n.m..u+~+| M J(ri;)SipSip ] TC

{S} i=1p=1 i#j=1

Here N; denotes the number of particles in one of the GEMC-boxes at volume V;. In the
GEMC simulation in addition all necessary volume and particle decompositions have
to be taken into account properly for the full partition function {7, 10]. The oOmmemam
Ap and Kp are given by

Ap = [Ssinh(Buo/P)?, Kp = Mlm._%%agsg. (®)

A is the thermal de Broglie wavelength and the quantum chains have periodic boundary

conditions w.r.t. P, and S;, = £1.
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In order to study the systematic ensemble and size dependencies of the gas-liquid
coexistence densities, which recently got much attention in the context of GEMC sim-
ulations [13], we chose the same interaction parameters as in ref. [12]. The Gibbs
ensemble simulations [7, 10] were done with N = 200 particles and P/3J = 40. A
typical run over 10% Monte Carlo steps (consisting of 200 attempted moves, 20 particle
exchange and 1 volume change attempts) took about 14 CPU hours on a CRAY YMP.

In an additional study we analyzed the phase diagram by a combination of PIMC
and finite size scaling techniques [12]. We obtain the phase diagram including phase
coexistences, tricritical and triple points to a high degree of precision by combining block
analysis finite size scaling ideas with Quantum Monte Carlo techniques. In addition,
we find a square lattice solid phase in coexistence with gas and / or liquid phases. We
observed the following general behavior: in the high temperature regime as the density
is increased a second order transition from a paramagnetic (PM) to a ferromagnetic
(FM) fluid phase takes place; we measure the magnetization in z - direction. This
is equivalent to a changeover from occupation of eigenstates of 6% to that of o7, i.e.
hybridization occurs and the ” molecules change their preferred internal state”. Applying
the finite size block analysis technique [6], sketched in section II A, in conjunction with
the density cumulant intersection method[6] we are able to locate this tricritical point
at the end of the critical line at ((B4r:J) ™Y, peri R?) = (0.57 £ 0.02, 0.45 + 0.01). Below
the tricritical temperature a PM gas phase coexists with a FM liguid phase for a certain
density window.

By cooling the system further down a sudden jump in the coexistence curve on
the high density side occurs: the system crystallizes into a solid phase. Below this
temperature we find coexistence of a PM gas phase with a square lattice FM solid
phase. We assume that the square lattice is stable because of the particular choice
of the interaction potential J(r) of the square well type, which favours square lattice
structures energetically at low temperatures.

The results of the GEMC simulations for the gas-liquid coexistence densities are
presented in table 2, together with the NVT- ensemble results of ref. [12] and mean
field (MF) predictions. We note only a weak ensemble dependency of the results. The
mean field theory predicts a too large coexistence region resulting in a 100% deviation
from the GEMC results for the gas-liquid critical temperature T,, which was found by
GEMC to be about 7, = 0.57, in good agreement with NV T-ensemble results.

The MF study provides a qualitative correct phase diagram but it underestimates
the fluctuations and in principle only contains the tricritical exponents of the system
in three dimensions. The exponent describing the merging of the phase boundaries in
the tricritical point is distinctly smaller than the MF value (unity) resulting in a much
flatter shape of the coexistence region and thus the tricritical temperature is off by a
factor of two as compared to PIMC!

C. Density functional theory

We now discuss [14] a modification of the Ramakrishnan-Yussouff theory [15] to the
model fluid of section II B. We start by introducing a combined classical - quantum



250 P. Nielaba

free energy functional of the time averaged number density p(r) and the magnetisa-
tion density m(r) for the Helmholtz free energy per unit volume. We incorporate the
magnetic interaction arising from the presence of the internal quantum states in the
sense of a mean field treatment [11] of the attractive interaction in addition to the
classical hard disc contribution to the free energy. The magnetization density m(r), for
the ferromagnetic solid that we consider here, is proportional to the number density,
i.e. m(r) = mop(r); we measure the magnetization in the magnetic z~direction. In the
mean—field model, the magnetic field on one particle due to the interaction with all other
particles is approximated by the average molecular field, &, (r) = [ dr'm(r — r')J(r').
As a result the (many body) Hamiltonian (3) effectively reduces to a one-body Hamil-
tonian, which can be straightforwardly diagonalized. The free energy functional in this
approximation is given by,

BIQD) = Bfall)+ 5 [ Frntem(r)= [ o) nl2cosh{BEL ) +03/0)] (6)
The integrals are over the full two -dimensional ” volume” V. For the classical noizvc-
tion to the free energy Bf.([p]) we have used the Ramakrishnan - Yussouff functional in
the form recently introduced by Ebner, Krishnamurthy and Pandit which is known[16]
to reproduce accurately the phase diagram of the Lennard - Jones system in three
dimensions. In the classical part of the free energy functional, we require as an in-
put the Ornstein - Zernike direct correlation function for the hard disc fluid. For the
DFT-calculations reported we have used, for this quantity, the accurate and convenient
analytic form due to Rosenfeld[17]. 4

The free energy functional (6) needs to be minimized with respect to choices of
(non -uniform) densities p(r) to obtain the Helmholtz free energies of the solid phases.
Motivated by the simulation results, we studied in addition to the usual hexagonal also

the square lattice solid. In order to obtain the free energies of the solids, we approximate

the one body density p(r) at position r by a set of non - o<m~._mw?:m Gaussians S;r
width a/a? centered on lattice sites R in a lattice of lattice parameter a.

o) = P22 S expl-a(r — R)*/a) )

R 23

where pg is the average density of the solid and A, denotes the area of the unit cell.
This ansatz for the density now reduces the free energy functional to a function of ﬂrm
variables mg and a. The global minimum of this function in the space of « and mg
for a choice of {R} gives the Helmholtz free energy of the chosen lattice. Knowing | the

Helmbholtz free energy in the fluid phase from the mean field analysis of the same m%mama :

for the homogeneous case- by de Smedt et. al[11], it is straight forward to obtain the

T* —p* phase diagram by performing double tangent constructions to obtain noax_maouoo
densities.

The phase diagram of Hamiltonian (3), has the following features (wy = 4 and -

Jo = 1 where chosen as in the simulation): In the high temperature limit, the system

is paramagnetic for all densities and we observe the (temperature independent) hard -
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disc freezing transition. Our estimates for the freezing density (pf = 0.847) and the
fractional density change during freezing (n = 0.066) are close to the estimates for
the same quantities in computer simulations (pf = 0.878, 7 = 0.0499) and previous
theoretical studies (pf = 0.858, n = 0.0723) of the two dimensional hard disc system,
both known from the literature [14]. As the temperature is reduced below T™ = 5.9,
the system undergoes a second order transition from a paramagnetic fluid phase at low
densities to a ferromagnetic fluid at high densities and a first order transition from a
ferromagnetic fluid to a ferromagnetic hexagonal solid. As expected, the freezing density
decreases with decreasing temperature due to the greater stability of the solid phase
arising from the magnetic interaction. The DFT-predictions for the location of the
fluid—solid transition was confirmed by an anlaysis of bond-orientation order parameter
of Monte Carlo data [18]. Also, the average magnetization of the solid mg is observed
to be higher than that of the fluid. At temperatures below the tricritical point T p, =
1.25, we have a first order transition from a paramagnetic gas to a ferromagnetic fluid in
addition to the liquid - solid transition. The liquid phase is stable only for temperatures
above a first triple temperature T*rp, = 0.55, while for temperatures below T*7p, and
above T*rp, = 0.07, we obtain coexistence of a paramagnetic gas with a ferromagnetic
hexagonal solid. The square lattice solid, observed in the Monte Carlo simulations[12]
at T* = 0.16 + 0.01, starts appearing at temperatures below 7% = 0.09 and for a
range of temperatures T*7p; < T™ < 0.09 there exists a re-entrant transition with the
hexagonal solid appearing for low and high densities separated by a narrow region of
square solid stability centered around p* = 1.0. Upon lowering temperatures below the
paramagnetic gas - ferromagnetic square solid - ferromagnetic hexagonal solid triple
point (T*rp,), we found a gas - square solid coexistence followed by a square solid -
hexagonal solid structural transition at higher densities.

The topology of our phase diagram is in agreement with our Monte Carlo results. We
successfully predict a thermodynamically stable square lattice solid, a surprising finding
in the simulation [12]. Because of second nearest neighbor contributions in the square
lattice structure, resulting from the particular choice of the magnetic interaction J(r),
the square lattice has a lower magnetic energy. The hard disc contribution, however,
strongly disfavors the square lattice structure in two dimensions.

IIL. Orientational Phase Transitions in Adsorbed Monolayers

A. The Onmmw. of the Herringbone Transition of N» on Graphite

Since many years adsorbed layers of Ny on graphite serve constantly, as a prototype
example to study phase transitions in two dimensions. The phase diagram [19}, includes
below 50 K a registered phase having a commensurate (v/3 x V/3)R30° structure. The
orientations of the molecular axes undergo in this phase an orientational phase transition
quite independent from coverage (below a coverage of 1.2) at around 27 K to the “2-
in” herringbone phase keeping the translationally ordered V/3 structure of the molecular
centers of mass; for an overview over the experimental and theoretical literature see
ref. [20, 21]. Stimulated by a controversial discussion on the order of the transition
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Fig. 1. Inverse effective correlation length £~! in units of the lattice constant a = 4.26 Aas
a function of temperature; the extrapolated transition temperature Tp = 25.02 + 0.08 K as
obtained independently from energy cumulants is marked by a dotted line. Full lines correspond
to a fit assuming a simple linear dependence ¢ = £4+ Cy | 1 —T/T, | expected near Tp for a
first order transition, while dashed lines assume the critical behavior of the 3-state 2D Potis
class, ¢ = m.w, 11 —T/To |7 with [26] v = 5/6.and [27] £F /¢; = 4.1. :

(for an overview see ref. [20]) we investigated [20] the herringbone phase transition of

Zm in :.5 Az\wx v/3)R30° commensurate phase on graphite by large scale Monte Carlo
simulations using the anisotropic planar—rotor model. The effective correlation length

¢ is measured near the transition temperature Ty. The data, extrapolated to Ty, yield -

a large but finite £ at Tp demonstrating that the herringbone ordering is a weak first
order transition.

m,o.__os;:m the previous studies [22] of the order of the N3 herringbone transition on
graphite, we use the APR Hamiltonian [23]

N
H=K(N3) Y cos [20(Rs) + 20(R;) — 46;;] ®)
(i.4)

to model the quadrupolar interactions between the N = L? molecules; all angles are :

measured relative to one symmetry axis of the triangular lattice, and ©;; is the angle
connecting lattice sites R; and R;. The rotators {¢(R;)} are pinned with their center
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of mass on a triangular lattice {R;} representing the (/3 x /3)R30° structure, and
only nearest neighbor interactions (¢, j) are taken into account. The coupling constant
K(Na) = 33 K is obtained [22, 23] from the electrostatic quadrupole moment of Ny and
the v/3-lattice constant is a = 4.26 A. We define correlation functions

N
1
La() ={ M 2¢(R:) + 20(R; + lag)] )
along the three symmetry axes, where {a,} denotes lattice vectors ([ a, |= a) along

these axis and [ runs over the neighbors along these directions. Although it is known
that the decay of T, ({) for large distances { should be exponential, I'4 (1) ox exp {—I/€], an
estimation of £ from simulations is difficult. For small [ there may be strong systematic
corrections to this law, while for large [ there are not only severe statistical problems
but also systematic corrections due to the periodic boundary conditions, i.e., T'o(l) =
[o(L—1). Also, lattice structure effects such as an even-odd oscillation of I'4(l) present
a difficulty. Thus € often depends on the range of { used in a fit to the exponential decay
law. These problems are avoided by the procedure [24] defining & via

To(l) — Fo{00) m

To(l+m) — I'y(o0) = m|~ wlf)

S InTo(l) :=1n

where To(00) := To(L/2>> 1> £) denotes the constant asymptotic value of (9) which
vanishes in the disordered phase; m = 2 takes care of the fact that I'n(/) oscillates
with period two, see ref. [25]. The advantage of this approach is that no (possibly
uncontrolled) fitting is involved, and especially that the range where {; approximates
the true ¢ can be assessed by inspection. If a plot of &, InT,(l) versus [ yields a
plateau for a certain window of distances [ then £ may safely be extracted from such
a plateau value, i.e., the linear dimension of the system and the quality of the data
(equilibration, statistics) are sufficient. The simulations were carried out [20] with
a standard Metropolis MC algorithm which is highly vectorized via a three sublattice
checkerboard decomposition using fully tabulated potentials. We used linear dimensions
of L = 60, 90, 120 and 180, equilibrated carefully, and needed a statistical effort of up
to 1 500 000 MC sweeps over the lattice. Since the relaxation time at Ty even for L =
180 is estimated to be not larger than 7 ~ 50 000, our observation time by far exceeds
the relaxation time.

From the plateau, we obtain 2/¢ directly and plot £7' in Fig. 1. as a function of
temperature. The behavior of £~! demonstrates that the correlation length increases
upon approaching 7y but without showing even an onset of a divergence upon coming
close to Ty; it should be noted that we managed to measure § as close as only 2%
(0.3%) off Ty, and that we covered roughly one decade in reduced temperature both
from above and below. The temperature dependence of the data suggests extrapolating
&7 linearly which yields a fintte {4 = 23 (- ~ 12) upon approaching Ty from above
(below). Thus, judging from the behavior of § we find that the herringbone transition of
the APR model is a weak fiest_order transition. For comparison we have also fitted our
&~H(T) data to the power law (including the known critical exponent [26] and amplitude

-1
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S.a,mo [27) mxwmﬁma for the ¢ = 3 Potts model in 2D. But, as can clearly be seen from
Fig. 1. that, especially near 7}, the critical fit is not at all satisfactory.

B. Quantum Effects on the Orientational Phase Transition

. We .,.a&&mmm now the problem to quantify the effect of quantum fluciuation on the
orientational ordering in this molecular system. A method suited to study finite-
amvaEaEm many-body quantum systems is the Path Integral Monte Carlo (PIMC)
aanr.:_e._w. A very efficient PIMC scheme [28] especially tailored to simulate rotational
motion is used to study a many-body system [21]. This allows us to investigate a highl
Ra:m:m adsorbate composed of as many as N = 900 quantum N rotators and .Hno?mm
M_hmﬂawcw_o:m up J_ﬁ = womw Thus we are able to quantify the influence of quantum fluc-
.uations on a collective phenom i impli
uations on ol wvvu%xmamzomsmﬁ.u: in a molecular system beyond strongly simplified

Following our aim, we try to capture as much of the microscopic features of the
.m%mfms as possible, but restricting ourselves at the same time to design a model which
is just tractable with modern techniques. First of all, we pin the molecular centers of
mass on a regular trigonal v/3-superlattice found experimentally [19]. In addition, it is
established by several methods that the molecular axes stay in the graphite w_mzm“s\:w
a very .m:w.:u distribution around this favored plane nearby and below the orientational
transition. Concerning the Ny-Ny interactions, the X1 model [29] consisting of site-site
rm::w,&-wo:mm and quadrupole interactions was shown to yield a realistic representation;
the rotational constant Oy, was 2.9 K. Steele’s Fourier-representation (30] is used ﬁw
model the Ny-graphite interactions.

The herringbone order parameter (OP) & = 3 2 143 i
suitably generalized components for WHAZOVM:émSmum%:u% Bl i defed ]

N P
H & s -
P, = NP M H sin(2¢; ) 2n0) expliQar;] , (11)

j=1 3=

where Q1 = 27(0,2/v3)/a’, Q2 = 2n(~1,-1/V3)/d’, Qs = 2x(1,—1//3)/a’ and
m =07 = 27/3, 53 = 4n/3;a’ = V3a and a = 2.46A. ;

The central quantity is the OP as a function of temperature, see fig. 2.. The critical
temperature T, of the classical system can be located around 38 K. At high tempera-
?:wm, the quantum curve of the OP merges on the classical curve, whereas it starts to
deviate below T.. Qualitatively, quantum fluctuations lower the ordering and thus the
quantum OP is always smaller than the classical counterpart. The inclusion of quantum
effects results in a nearly 10% lowering of T, see fig. 2..

Furthermore, we can infer quantitatively from our data in fig. 2. that the quantum
system cannot reach the maximum herringbone ordering even at extremely low tem-
peratures: the quantum librations depress the saturation value by 10%. In fig. 2., we
m__mo compare in detail OP and total energy as obtained from the full quantum m:&‘:_m.
tion with standard approzimate theories valid for low and high temperatures. One .o@:
clearly see how the quasiclassical Feynman-Hibbs curve matches the ;251;. c:.«:wga
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data above 30 K. However, just below the phase transition, this second order approxi-
mation in the quantum fluctuations fails and yields uncontrolled estimates: just below
the point of failure it gives classical values for the OP and the herringbone ordering
even vanishes below 5 K. On the other hand, the quasiharmonic theory comes from the
other end of the temperature axis and yields very accurate data below 5 K.

Our technique also allows to extract an average zero-point libration amplitude of 14°
which compares favorably to the 18° from quasiharmonic lattice-dynamics [31] for X1-
N, at 0 K in three dimensions. Since the validity of such approximations is very difficult
to estimate a priori, exact full quantum reference simulations as presented here are
clearly required to control such approximation schemes. This becomes clear when one
considers the shift in 7. as obtained from the second order Feynman-Hibbs simulation:
it breaks down essentially at the same temperature where the transition occurs and
a breakdown at a slightly higher temperature would give wrong results. In addition,
one does not know where to match the regimes where different approximations are still
valid. The PIMC simulations, however, yield exact results over the whole temperature
range from the classical to the quantum regime.

IV. Random-field induced rounding of the Ising-type transition in
physisorbed (CO);_.(N3), mixtures

The statistical thermodynamics of systems with randomly quenched disorder is a real
challenge for theory, for an overview see ref. [32] and references therein. Particularly
striking phenomena are predicted in reduced dimensionality, such as the destruction
of long-range order of Ising type systems in d = 2 dimensions by arbitrarily weak
random fields [33]. This absence of true long-range order also shows up in a rounding
of the transition even by very weak random fields, which has been confirmed by a recent
experiment on (CO);1-z(N2)s [34].

Very weak dilution of CO with Ny molecules (concentrations of 3% or less) produce
a strong rounding of the specific heat anomaly of the transition [34]. Assuming that
the quadrupole moment and dipole moment of the CO molecules are linearly coupled,
one would obtain from the quadrupole—quadrupole interaction between Ny and CO an
effective random field acting on the CO dipole moments. Note that we do not imply,
of course, that interactions of any electrostatic origin dominate - van der Waals forces
between the atoms may lead to pseudodipolar or pseudoquadrupolar terms as well. For
simplicity we describe the system by a simple square lattice, disregarding the actual
sublattice structure. Associating an Ising spin S; = 1 with a CO molecule at site ¢
and S; = 0 with an N- molecule at the site. we arrive at the following Hamiltonian [32]:

H=+ > JSiS; - J'Si(1-S3) (12)

<ij> S RN
Here J is the interaction between the nearest neighbour pairs of spins (pseudo—dipole-
dipole interaction), J' the hypothetical ps ido-dipole-quadrupole interaction. In this
model the sites j taken by Ny produce a field randomly. sometimes on a site in the
sublattice where the spivs are up and sometimes in the sublattice where the spins are
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0.2

moé‘:. This model is studied by Monte Carlo methods [32]. We used square lattices
of sizes L = 24,32,40,50 with periodic boundary conditions and different WB_EH;W ;
mo:omw:miozm z. Averages are taken over 100 — 200 different configurations of the
impurity distribution over the lattice for each . Typically, systems were mn::mwnmawm :
with runs of a duration of 2.5 x 10* MCS per site, while averages are taken over the
subsequent period of 2.5 x 10* MCS/spin, all computations were done on IBM Wmm@ s
.mooohmo workstations. Figure 3. shows the rounding of the specific heat for &mwmmmw
impurity concentrations. Detailed analysis of the order parameter, susceptibility and
the 0:5.:_@3 [32] are consistent with the interpretation that the transition in the w_.:o
system is rounded by the random field.

Following Fishman and Aharony [35] the crossover from the critical behavior, of
the pure system (z = 0) to the new behaviour can be described by a scaling nrmoQ
Just as there is a scaling behaviour with a uniform ordering field 2’ in a pure system
C = |t|7*Cp:(th'=2), where t = 1 — T/Tz and A = v+ /3. and «, 3 and v are th
,.ﬁ,m:a.m:m critical exponents of specific heat, order tmnmamﬂmm and mLis:E:Q there |
1s a stmilar scaling with the random field amplitude & in the random field Ising _Bom&
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Fig. 3. Specific heat C per lattice site plotted versus T/T for L = 50 and various choices of =
as indicated, data for J’/J = 2.

namely C = |t|~*Cx(th~?/?), where the crossover exponent ¢ = v. The logarithmic
specific heat divergence implied by & = 0 actually means that additional logarithmic

terms are needed,

C = Cr(th™%%) — (2A/¢)Ink (13)

fort — 0, h—0, E}lﬁs finite, where A is the known specific heat amplitude of the
pure system. Now the problem arises of how we can translate the randomness of our
Hamiltonian to the random field considered in the theory. The standard assumption
is that one simply equates the configurationally averaged moments, noting that for an
antiferromagnet we need to consider a random staggered field rather than a random
uniform field. Due to the phase factor (=1)!**, where I,k are the z,y coordinates of
the lattice site i, the random staggered field acting on site 1 due to the second term
in the Hamiltonian is h; = (—1)"TFJ' 3, (1 = 57), [hew = (=1)"**J'zz, 2z being the
coordination number of the lattice, nmamu:vmr:m that the sum over j runs over nearest
neighbours only. After averaging over the Jattice sites, [h;]s, vanishes due to the phase
factor. However, for h? we find A} = J?5 (1 — S3) (1= S%), e = (helle =
J'?222(1 — z). From this consideration one may identify the random field amplitude
has zJ'/r(l — z). We thus expect Cinae = constant — (A/¢) Infx (1 — z)}. Our data
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are nicely compatible with a logarithmic variation, however the constant in front of
the logarithm is a factor 1.5 too large, compared to the theoretically predicted one.
We attribute this to our numerical limitations (critical slowing down and finite—sige
effects prevented us from the study of somewhat smaller z). We also analyzed the
scaling function C*{t(h/J)~®7] with C* = C + A~ In(h/J) and t = (T/Tm — 1), T,
is the temperature of the specific heat maximum, h/J = \J/2(l - z), and Swmosmvﬁ
confirmation of crossover scaling is obtained.

For the case of pure CO-adsorption (z = 0) we investigated [36] the low tem-
perature ordering of CO physisorbed on graphite, by Monte Carlo simulations with
finite—size scaling methods using a realistic microscopic model with continuous orien-
tational degrees of freedom and a recent ab initio potential. Based on the finite-size
scaling behavior of the order parameter— and energy—cumulants, the order parameter
and its susceptibility, the head—tail ordering transition of CO on graphite is assigned to
the 2D Ising universality class. This assignment as well as the critical amplitude of the
heat capacity agrees with recent experiments [34]. Quantum fluctuations do not alter
the ground state order but rather renormalize the low critical temperature by —10%.
In addition to the confirmation of the experimental findings which rests on a much
broader basis, we go beyond experiments and predict [36] further details such as the
critical amplitude of the order parameter. An analysis of different contributions con-
stituting the total CO~CO interactions reveals that the ordering is not caused by the
electrostatic dipole moment, but by the shape-asymmetry of the molecule. We suggest
that the ordered ground state is a ferrielectric: herringbone structure with a net dipole
moment perpendicular to the herringbone symmetry axis.

V. Summary

Phase transitions in adsorbed layers are studied by Monte Carlo and density func-
tional techniques. In the case of the entropy driven phase separation of a nonadditive
symmetric hard disc fluid we locate by a combination of GEMC with finite size scaling
techniques the critical line of nonadditivities as a function of the system density, which
separates the mixing/demixing regions, we compare with a simple approximation. We
successfully combine path integral Monte Carlo (PIMC) and GEMC techniques in order:
to locate the gas-liquid coexistence densities for a fluid with classical degrees of freedom'
and internal quantum states, good agreement with NVT-ensemble results is obtained;:
the predictions of density functional- and mean field are presented. Linear Ny molecules 7
adsorbed on graphite (in the /3 x /3 structure) show a transition from a high temper-
ature phase to a low temperature phase with herringbone ordering of the orientational -
degrees of freedom. The order of the transition is determined in the anisotropic planar- -
rotor model by analysis of the correlation length & near the transition temperature To. -
The simulation data, extrapolated to Ty, yield a large but finite £ at Ty demonstrating’
that the herringbone ordering is a weak first order transition. The effect of quantum
fluctuations on the herringhone transition is quantified by PIMC and classical simu-
lational methods. Quasiclassical and quasiharmonic calculations agree for high and
low temperatures, respectively. but only PIMC gives satisfactory results over the entire

femperature range. The random-field-induced rounding of the Ising-type transition in
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physisorbed (CO);_{(Ny), mixtures can be understood in terms of a simple Ising type
model. Good qualitative agreement is obtained with recent experiments.
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