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A brief survey of recent progress in understanding the kinetic roughening in growth
models with surface diffusion, which are relevant for growth by molecular-beam
epitaxy, is given. The main emphasis is on results of computer simulations. Prop-
erties of several different models are described and compared. In particular, re-
sults for two models, the Wolf-Villain model (and its modifications) and the full-
diffusion model, in 141, 241 and also in higher dimensions are presented. The
asymptotic behavior of the Wolf-Villain model is of an Edwards—Wilkinson type.
Both models show an unusual scaling behaviour of the height-height correlation
function.

1. Introduction

In recent years, the kinetic roughening of surfaces under the action of a driving force
has become a field of increasing interest [1]. Kinetic roughening is a nonequilibrium
process in which surface fluctuations exhibit an universal behavior leading to the scal-
ing in both time and space with two characteristic scaling exponents { and z. This
universal behavior has been observed in a wide variety of growth models and there has
been considerable effort in finding different possible universality classes. However, most
of the growth models studied so far (for example ballistic aggregation, Eden model,
restricted solid—on-solid (SOS) model and so on) belong to the Kardar—Parisi-Zhang
(KPZ) universality class [2].

Recently, properties of models with surface diffusion have been intensively inves-
tigated. Physical motivation, besides the pure theoretical interest, is understanding
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growth processes in molecular beam epitaxy (MBE). Different variants of simplified
(toy) discrete models with relaxation after deposition as well as more realistic full dif-

fusion (FD) models have been formulated [3-10]. Here we briefly describe recent results.

of numerical simulations and mention some experimental results as well. Since this

field is a subject of intensive research (both theoretical and experimental) our review is -

necessary incomplete.

2. Kinetic roughening

One of the quantities which characterize the state of the surface is its roughness. Quan-
titatively it can be mmmolvm& by the surface width w. Let us consider a surface in
d-dimensional space given, in the case of a strip geometry, by a single valued function
h(z,t) of the d'~dimensional (d = d’ + 1) substrate coordinate z. Then in the case of
a discrete model (the usual Im?:mn._oa in numerical simulations) the surface width w is
given _ox w? = (% 3 ;(hi — h)?), where h = L3, hi is the average height, h; = h(z;),
N = L%, L is a linear size of the system and (...) means a statistical average. Grow-
ing surfaces are in general more rough then surfaces in thermal equilibrium. Kinetic
roughening describes the way in which the surface becomes rough, in nonequilibrium
situation, i.e. how w evolves in time £. A remarkable fact is the existence of self—affine
scaling. If the lenght in a direction parallel to the surface is scaled by a factor b and
‘simultaneously the lenght in the perpendicular direction and the time by factors ¢ and
b*, respectively, then the surface profile and its properties are statistically invariant.
It has been found [11] that starting from an initially flat substrate, the surface width
w obeys the dynamical scaling law w(t, L) oc LS f(t/L?), where the scaling function
f(x) has properties f(x)=const, z>>1 and f(z)xzf 2 <1, B=(/z. Thus, w grows
according to a power law, w o {0 until a steady state characterized by a constant value
of the width is reached after a time t,,, proportional to L*. The value of the saturated
width w,q; varies with the system size according to wsar x L¢. The exponents ¢ and 2
(or ¢ and B) characterize the scaling behavior of the roughness for a particular model
and determine its universality class in analogy with theory of critical phenomena.

Alternatively, one can study the surface roughness using the height-height aolm»,‘
Jation function G(r,t) = ([h(x + r,t) — h(x,t)]?) which obeys the scaling relation [1]
G(r,t) « r%g(r/t'/*"), where the scaling function g(z) is constant for z < 1 and
g(z) x £~ %" for z > 1. Equivalently, the structure factor S can be used. In BE,Q
growth models the exponents obtained using the two different methods are equal [1].
However, in case of models with surface diffusion anomalous behavior has been found
[12], attributed to the power-law increase of the average step height. i

There are two main theoretical approaches to kinetic roughening: i) the mn:&f@w
macroscopic stochastic continuum equations of motion which are formulated using phe-
nomenological and/or symmetry arguments, and il) numerical simulations of discrete
models defined by a set of local rules corresponding to physical processes during growth
(deposition, desorption, diffusion) on atomic level. -
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3. Continuum approach

Supposing coarsed-grained picture one can write stochastic differential equations for
evolution of the surface in the form

dh(r,t)
ot

where F{h(r,t)} is functional of the derivatives of h and 7(r,1) is a zero mean, random

noise term in the incoming flux. The scaling exponents are usually calculated using

renormalization group (RG) calculations within the one-loop approximation (see e.g.

[6, 13]) or a Flory—type approximation [3]. The choice Fi{h(xr,t)} = vV 2h+A(Vh)? gives

the KPZ equation [2] which describes growth in the case when lateral interactions are

important. The scaling exponents for the KPZ class are known only in 141 D, ( =0.5

and 8 =1/3 (z =3/2). In higher dimensions, only results of numerical simulations are.
available (¢ & 0.39 and 8 ~ 0.24) (1.

In a number of recent theoretical studies (3, 4, 6, 8, 13], models in which surface
diffusion is the dominant physical mechanism of the surface smoothing were studied.
These models are conserving (evaporation is not taken into account since it is negligible
in a typical experimental situation for MBE growth) with the functional F{h(r,t)} in
the form F{h(r,t)} = =V - j(r,t). This corresponds to MBE growth at sufficiently
high temperatures when no voids or overhangs are formed. The scaling relation 2¢ =
+ — d' holds for these models [4]. The current j(r,) is a function of the derivatives of
h(r,t). The most often studied cases were j < —Vh (Edwards-Wilkinson (EW) model
[14]), j o« VV?h (the linear diffusion model [3, 15]), and j o« V(Vh)? and j o< (Vh)?
(the nonlinear diffusion models [4, 6, 12} which we will denote I and II, respectively).
The predicted values of exponents are 3, 6, 13] Y = (3 - d)/4, CEW = (3 —d)/2,
Q:.: HAm _ &v\mv A:.: HAm = &v\w“ Qze:::INHAm _ o&\ﬁ + &v. ﬂ:en::lﬁﬂﬁw _ Rv\w“ and
grentin—IT — (5 — d)/2(3 + d), ¢rentin—Il = (5 — d)/4. In general, one can expect also
different higher order terms. However, asymptotically only some of them are relevant
and lead to the values of exponents given above. Crossover to these true exponents
which is caused by asymptotically irrelevant terms may be, however, rather slow.

= F{h(x,t)} +n(r,1) , (1)

4. Results of numerical simulations

Alternative approach to the study of kinetic roughening is to employ a powerful
computer and study discrete models with microscopic rules reflecting physically impor-
tant surface processes. There are two main categories of discrete models considered in
connection with the study of kinetic roughening during MBE growth. In both cases SOS
approximation is used. Simple (toy) relaxation models form the first group. Variety of
these models has been formulated in literature [4-8]. Here we focus our attention on the
model proposed by Wolf and Villain (4] (WV). The microscopic rules of the basic model
are as follows. In every time step, a particle is added at a randomly chosen lattice site
and then relaxes toward a nearest-neighbor site which offers the highest coordinalion
(the number of nearest neighbors) where it sticks for the rest of the simulation. If the

number of nearest neighbors cannot be increased, particularly in the case of tie (one
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Surface width

Time (ML)

Fig. 1 - Surface width vs. time for the WV model in 1+1 D (L = 150(A), 300(x), 600 (O)
800(0), 1000(e}, 2000(0), and 40000 (==)). Notice that data for larger lattice sizes (L > wcov.
were offset to avoid overlapping of data points. -

or more neighboring sites have the same coordination as the original site) the particle
stays at the initial position.

Original simulations of the model in 141 D [4] yielded exponents Begr=0.36510.015
and (eg=1.420.1 (thus Zogg =3.8+£0.5) in agreement with the theoretical prediction of
the linear model. However, a subsequent numerical work [7] has shown that in 24+1 D
the values of the exponents are feg =0.2060.02 and (er=0.6630.03 (thus zeg =3.240.5)
which correspond to the prediction of the nonlinear model I. The puzzling difference
between the behavior of the model in 1+1 and 2+1 D has been confirmed in another
numerical study [8] and stimulated further work. In recent large-scale simulations
of the WV model in 1+1 and 241 D [16] we have found that the WV model shows
complicated crossover behavior. In the case of exponents obtained from the surface
width there are two crossovers in 1+1 D (Fig. 1): (i) a crossover from feg 2 0.37 (8%™)
to Beg =~ 0.33 Amze:::Lv and (ii) a crossover from Beq =~ 0.33 to Begr = 0.25 Amms\v
In 241 D we observed one crossover from S = grortinI to the scaling behavior of
the EW model, i.e. a logarithmic increase of w. Crossover times for the change to the
EW behavior, ~ 2 x 10° (141 D) or & 3 x 10* (2+1 D) deposited layers, agree quite
well with the prediction by Krug et al. {17]. This prediction was based on the study
of the inclination—dependent diffusion current which is supposed to generate the EW
term AA.\.MS in continuum differential equations. The EW term is more relevant (in RG
sense) than all allowed nonlinear terms [13] and governs the asymptotical behavior of
the model. The long time needed to observe the asymptotic regime may be explained
as due to a very small coefficient in front of the EW term. Another indication that the
WYV model belongs to the EW universality class has been very recently obtained by the
study of the dependence of the saturated average step height Gsai(1,t) for ¢ — oo on
the system size L [18]. In higher unphysical dimensions (3+1 D and 4+1 D) the WV
model shows an instability leading to a mounded surface profile [19].

It has been found recently that the WV model in 141 D does not fulfil standard
scaling and that different values of the exponents are obtained from behavior of the sur-
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Fig. 2 - Example of the surface morphology for 300 x 300 lattice obtained in the FD model
with additional step-edge barrier Es.

face width and the correlation function and/or the structure factor [12]. The exponents
obtained in 1+1 D from the behavior of the structure factor were (e =0.7530.05 and
255 =2.440.1 (thus B ~0.31). Exponents calculated from the correlation function are
very close to the nonlinear model II predictions in 14+1 D ((g & 0.75) {12, 16], whereas
they are close to the nonlinear model T (¢ = 0.65 )[16] in 241 D.

FD models in which particles on the surface can move not only after deposition
but during the whole simulation form the second group of discrete models. In these
models there are two basic rates, one for deposition of new particles and another for
surface diffusion. One can consider different mechanismus of incorporation of arriving
particles, the simplest case being random deposition. A prescription for the calculation
of the hopping rates can have different forms. Models with Arrhenius dynamics, 1n
which the diffusion rate is given only by the bonding energy at the initial position, have
been successfully applied in the study of early stages of MBE growth [20]. This kind
of models has been first suggested in connection with kinetic roughening (in 141 D)
by Das Sarma and Tamborenea [5] who calculated, however, only the exponent fer.
They found that it changes with the temperature and estimated a value Beg =~ 0.375
for a situation where the arrival and hopping rates in their model were approximately
equal. Later Wilby et al. [9] obtained for a similar model crossover from Beg = 0.375
to feg = 0.33 in 14+1 D, Begg = 0.2 in 241 D and fBeg = 0.09 in 3+1 D. Siegert and
Plischke [10] studied a FD model in which the hopping rate for jumps to n.n. sites 1
and j is given by wi.; = k[ePAE 4 1]7. The change of the energy AE is calculated
using the Hamiltonian H = J Yocijy i — h;|". Results obtained for n = 2 (a special
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case without the Schwoebel effect, see below) are (e = 1.240.2, Bexr = 0.35£0.01, and
Zegr = 3.6£0.4.

In some experiments (see below) much larger values of exponents (even feq = 1)
than predicted by continuum equations with linear V4h or nonlinear V2(Vh)?, V(Vh)3
terms have been obtained. 1t is believed that this is usually due to an instability of the
growing surface caused by supression of interlayer transport due to a step—edge barrier

near a step which can prevent hops of atoms off the upper terrace. This effect has

been studied already some time ago by Schwoebel [21] and recently by Villain [3]. Very

recently, the Schwoebel effect in the context of kinetic roughening has been studied also

‘n numerical simulations. Zhang et al. [22] used a FD model in 141 D. They studied the
dependence of the exponent Beg on the value of the step—edge barrier Ej and obtained

an increase of Ge up to the value 0.5. Johnson et al. [23] investigated similar model in -

241 D and found that growth on a singular surface is unstable and that this instability
drives formation of mounds (Villain’s “sawtooth” profile [3]) on the surface. Anexample
of such surface morphology obtained from a Monte Carlo simulation of a FI) model with
parameters corresponding to homoepitaxy on GaAs(100) surface [24] after 300 ML have
been deposited is shown in Fig. 2. ;

Smilauer and Kotrla [25] found that the FD model used in [9] behaves in 1+1 D
very similarly to the WV model, in particular it exhibits the same anomalous scaling
due to the power-law increase of the average step height. However, in 24+1 D (and
in the higher dimensions as well) both models behave very differently, the FD model
providing smoother surfaces (a lower value of the exponent AM%V.

It has been also found that the linear increase of the roughness with time observed
in some experiments (see the following section) can be obtained in 2+1 D in a simple
modification of the WV model in which a particle in case of tie sticks at the highest
position. Surface morphology obtained in this modification of the WV model containes
deep grooves. The same rapid increase of the roughness in the FD model can be achieved
by forbidding hops of adatoms down step edges, while allowing for hops up.

5. Experimental results

So far, experimental studies of kinetic roughening during MBE growth are not nUmerous -
and no clear identification of the experimentally determined exponents with available

theories seems to be established. Chevrier et al. [26] studied epitaxial growth om,.m..w .
on Si(111) surface using reflection high-energy electron diffraction and reported ‘the *

exponent 3 beetwen 0.22 and 0.3. You et al. [27] carried out combined X-ray and

scanning tunneling microscopy (STM) measurements for Au sputter—deposited onto iSi

and found ¢(©) = 0.42+0.03, 8 = 0.4040.02 — 0.4240.02 decreasing with the msnnmmmw.uum

temperature. He et al. [28] obtained ¢(¢) = 0.79+0.05 using high-resolution Jow—energy

electron diffraction. Krim et al.[20] performed in situ STM measurements of Fe(100)

bombarded by Art ions with the result ¢() = 0.5340.02. Ernst et al. [30] investigated

the growth of a Cu(100) crystal with He atom scattering in real time. They found

that a growing singular surface is unstable and the resulting state is nrwnmnemlmmm;
by pyramidlike structures with the slope decreasing with the increasing temperature
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(cf. 3 23]). They obtained exponents g = 0.26 for T = 160 K and 8 = 0.58 for
T = 200 K, i.e. the roughness increasing with the temperature, and the roughness
exponent ¢(9) = 1 at both temperatures. Experiments with growth of Si on Si(001) [31]
Jead to a surprising result that the roughness linearly increases with time, i.e. B = L.
Very recently, high values of exponents (e.g., ¢(¢) between 0.6 — 1.2) have been reported
by several experimental groups [32] for metal-on-metal growth. It is our belief that
in most cases the high values of the exponents are due to instability caused by the
Schwoebel effect.

6. Conclusion

Results of extensive simulations of simplified relaxation models of the WV model
type in 141 D and 241 D (without step—edge barriers) show that their asymptotic be-
havior is of the EW type. The crossover to the asymptotic region is, however, very slow
and the effective exponents are much larger at intermediate times and length scales. FD
models offer more realistic description of the growth process and additional possibili-
ties, in particular for the description of the Schwoebel effect by introducing barriers to
hopping at step edges. Models of this type belong either to the Edwards—Wilkinson uni-
versality class or show an instability with large exponents. A special intermediate case
s the FD model with diffusion rates given only by bonding at the initial site (Arrhenius
dynamics). It seems that it belongs to a new universality class [25]. Both relaxation
and FD models show breakdown of conventional scaling at intermediate times, caused
by an increase of the average step height. Description of this effect in a continuum
picture remains to be done. In reality one expects that the Schwoebel effect will be
present in many cases and that two types of generic behavior are possible for MBE
growth at sufficiently high temperatures and realistic deposition rates: 1) an EW type
of growth with stable and only logarithmically rough surfaces (possibly amplified by
a negative Schwoebel effect, i.e. an increased probability of hopping down the step),
and 2) unstable growth, caused by the positive Schwoebel effect. The surface profile
in the latter case will be either grooved or composed of pyramidlike objects with the
characteristic parameters (a distance between grooves, a size and an angle of inclina-
tion of the pyramids) controlled by both the model and the external parameters. In
case of low temperatures or fast growth other scenarios are possible as well. If voids
and overhangs are formed, growth may be described by the KPZ equation. To explain

experimental results, more realistic binding energies and lattice structures should be
taken into account.
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