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The relaxation towards equilibrium of a profile imprinted on a crystal surface is
studied above and below the roughening transition of that surface. Evaporation
dynamics and surface diffusion are considered. Experiments and various theoret-
ical approaches, including continuum theories and simulations, show significantly
different features for profile shapes and decay times on rough and smooth surfaces.

1. Introduction

In equilibrium a surface is microscopically smooth at low temperatures while it
becomes rough at and above the roughening transition temperature, Tr [1,2]. This
phase transition has been studied extensively, both experimentally and theoretically,
for stepped (or vicinal) crystal surfaces (“step roughening”) and for surfaces of low
Miller indices. Macroscopically, the transition is characterized by the disappearance of
a facet of a given orientation from the equilibrium crystal shape.

The effect of roughening on the relaxation dynamics for surfaces has attracted much
attention in recent years, initiated by the systematic experimental investigations of
Bonzel et al. [3] on the flattening of one-dimensional grooves. By etching, a periodic
profile is imprinted on a crystal surface. During the relaxation process, the grooves
acquire, roughly speaking, either a sinusoidal shape or display flat parts {“broadening”)
at the top and bottom of the profile. Indeed, these two different types of profiles may be
explained by the fact that the surface is either above or below its roughening transition
temperature, Tr [4].

The healing of grooves has been studied extensively theoretically, using phenomeno-
logical descriptions and Monte Carlo simulations of SOS models. Particle transport by
evaporation— condensation and surface diffusion has been considered. The interested
reader is referred to the brief reviews (3, 5].
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Fig. 1. Geometry of the grooved surface.

. In this contribution, we shall present additional results, especially on comparing con-
tinuum theories to simulational data, above and below roughening. Above roughening
T > Tr, the classical description of Mullins is recovered in the limit of small meE:mm
o.m ﬁrm.mwn:moam_ profile, compared to the wavelength of the grooves [6]. Results are
given in Section 2 together with extensions of Mullins’ theory. In Section 3, the evap-
onmz.o: kinetics below roughening is considered, pointing out some open questions. In
.@m:_o:_wﬁ the atomistic nature of the problem, as realised in the simulations, is seen
in the dynamics of the top terrace and of its bounding steps, with Emmsmmazw of the
steps as well as forming and shrinking of islands [7]. We introduce a simpler model for
the top terrace dynamics, in which we analyse the decay of a single terrace, bounded by
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the article. .

2. Flattening above roughening

A. Mullins’ theory

. The m@nﬁmizm process of one-dimensional periodic grooves, see Fig. 1, was described
ina nom.;::::: theory by Mullins [8], assuming a small slope everywhere on the profile,
5.030@5 surface free energy and the mobility being also independent of the orienta-
tion of the surface. With these assumptions, Mullins showed that the time evolution
of the profile z(z,t) (¢ refers to the direction of the modulation) is determined, for
evaporation—condensation (e — ¢), by the diffusion equation ;M

8z 8%z
Oz?

where m is a temperature dependent coefficient. In case of surface diffusion (s — d) the
flattening process is described by the equation

zp = =F Zgppr AMV

s mau=E— = FEz, 1)
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Fig. 2. Profiles z(z,t) in the one-dimensional SOS model in the case of surface diffusion at
kgT/J = 0.8 with initial amplitude Ao = 45.5, comparing Monte Carlo data (full symbols)
with the pure sine form {open symbols).

with the constant F' being proportional to the diffusion coefficient. Accordingly, an
initial sinusoidal profile evolves, for evaporation—condensation, as

2(z,1) = 29 sin (27wz/L)exp (—E(2x/L)*t) , (3)
and, in the case of surface diffusion, as
2(z,1) = zosin (2mz/L)exp (-F(2r/L)*%) (4)

i.e. the profile shape remains a pure sine wave, and the relaxation is purely exponential,
with the relaxation time, 7, being proportional to L?(L*) for € — ¢(s — d), L is the
wavelength of the groove.

B. Simulations and extensions of Mullins’ theory

The predictions of Mullins’ theory have been tested by simulating the two—dimen-
sional SOS model at T > Tk [7] and the one-dimensional SOS and Gaussian models [6].
In one dimension, the roughening temperature Tg = 0. These models characterise the
surface by a height variable, hy, at site £. In the SOS model, the interaction between
neighbouring sites (¢, m) is given by the bonding energy J, with the Hamiltonian

H = Yem Jlhe — hml, (5)
while in the discrete Gaussian model the Hamiltonian has the form

H=Zom J(he —hm)® . (6)

In the simulations, Mullins’ theory is nicely recovered when the amplitude, A, of the
profile is sufficiently small compared to the wavelength, L, of the groove. Corrections

to that theory manifest themselves in a broadening of the profile shape, compared to
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Fig. 3. Numerical solution of the continuum theory, equations (8) and (9), for the profile
with Cu(©) = 1 and @ = 0.05 (full dots), compared to the sinusoidal form (circles). The
initial profile shape is sinusoidal with the amplitude being 0.5. Both the broadening (a) and
the approach to Mullins’ limit (b) are shown.

the sinusoidal form, and in deviations from the purely exponential decay law, where
the effective relaxation time may be larger or smaller than the asymptotic one (for a
detailed discussion, see Ref. 6). An example is depicted in Fig. 2, showing a pronounced
broadening of the profile at large amplitude.

Prerequisites for Mullins’ theory are the small slope of the profile, i.e. A/L < 1,
and the isotropic surface free energy, ¢(0), and mobility, #(©), where O is the angle
describing the orientation of the surface. In case of the one-dimensional SOS model, it
follows from the exact expression for ¢(©) that the free energy is (nearly) isotropic for

AL AA@G (—=J/ksT) )

Indeed, the simulations show a crossover to Mullins’ predictions when this condition is
satisfied [6]. The anisotropy in the mobility (if present at all above roughening) does
not appear to alter these conclusions (see also below).

Mullins’ theory may be extended in a straightforward way by allowing arbitrary
smooth slopes of the profile as well as anisotropic surface free energy[9] and mobil-
ity{10]. We restrict our discussion to the case of evaporation kinetics, as there it is
possible to compare in detail with direct Monte Carlo simulations both above and be-
low roughening. In the case of evaporation-condensation, the extension of (1) to include
arbitrary slopes and anisotropy leads to,

2 = Cp(©)2z0[0(©) + 0" (0))/(1 + 2,2) (8)

where C is a constant, and o"(©) = d%0/dO? with the angle © = tan~(2,).

An increase of o with angle © is expected to lead to a broadening of the profile,
because the flat surface is favoured, while an increase of the mobility with © may
result in a sharpening of the profile, because the sides of the profile, having a larger
inclination, decay faster than the top or bottom. This picture of conflicting tendencies
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in the profile shape due to the anisotropic surface free energy and mobility is confirmed
by our numerical analyses of equation (8).
For simplicity, we set C = 1 and assume

o(0) = (02 + §%)*/? 9)

For isotropic mobility, taking u(©) = constant = 1, the initial sinusoidal profile broad-
ens; at later times, when A/L < ©¢ ~ exp(—J/(T — TRr)), the profile becomes, in the
Mullins’ limit, sinusoidal again. An example is depicted in Fig. 3. The corresponding
temporal decay also resembles qualitatively the Monte Carlo findings, with deviations
from the exponential form at early times. By taking into account an anisotropic mo-
bility, similar to (9), one may easily monitor a crossover between a sharpening and a
broadening of the profile, typically accompanied by a rapid change in the time scale.
For instance, we observed the scenario where the initial sinusoidal profile first sharp-
ened, then broadened and finally recovered the sinusoidal shape. However, in the Monte
Carlo simulations the sharpening in the profile was not seen, giving additional evidence
that the anisotropy of the mobility plays no significant role above roughening for the
systems considered.

3. Evaporation kinetics below roughening

Below roughening, the surface free energy on vicinal surfaces ¢(©) displays a cusp at
© = 0 [1,2], which is approximated by ¢(©) ~ G1|©|+G3|O|". The first term is the free
energy due to isolated steps, while the second term is due to step-step repulsion. If step
fluctuations mediate the step-step repulsion, ¥ = 3. In the thermodynamic limit, the
linear Mullins’ theory is no longer valid, and several modified continuum theories have
been suggested [4,5,10,11]. In the following we shall consider the case of (¢ —¢). Due
to the singular nature of ¢(©) below roughening, there is a §(0) singularity in o”(©)
there. However Spohn has argued that because p(|©]) ~ [©] at small |©] in the case of
evaporation-condensation and in the thermodynamic limit, the §(9) is removed (note
that due to finite size effects in both the free energy and mobility, Spohn’s argument
is not entirely convincing - see below). Accepting this analysis and making the small

slope approximation, one finds
2o =D z;? zgg - (10)

where D is a constant. As noted before by Lancon and Villain [4], this equation implies
asharpening of the initial sinusoidal profile near its top and bottom, where the deviation
from the amplitude 62(8z,t) behaves like 6z ~ |6z[*/2. The simulated profile shapes,
for the two—dimensional SOS and Gaussian models, are in marked contrast to that
prediction, showing, at amplitudes close to integers, a broadening near the top and
bottom [7].

The discrepancy between continuum theory and the Monte Carlo simulations is
iltustrated in Fig. 4, depicting new data for the SOS model, well below Tr(kpT/J = 0.8,
while kgTr/J ~ 1.25). The discrepancy may be either due to finite-size effects in the
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Fig. 4. Profiles 2(z,t) obtained from simulating the two-dimensional SOS model of size
80 x 1000, Ao = 9.5, at kgT'/J = 0.8 with evaporation kinetics (full dots}, compared to purely

sinusoidal shapes {circles) and the prediction of the continuum theory, equation {10) with
D =1 (stars).
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Fig. 5. Time dependence of the amplitude, obtained from simulations with evaporation
dynamics for SOS models of size 80 x M, M = 1 (asterisks) and 1000 (circles), at ksT/J =
0.8, with initial amplitude Ao = 5.5. In the one-dimensional case, an average over 25000
realisations was taken. The time is measured in MC steps per site.

simulations, as suggested by Spohn [10], or it may indicate a possible inadequacy of
that continuum theory. Actually, the prior simulations were performed at, typically;
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0.25 < A/L £ 0.025, with L ranging from 20 to 140. The broadening was observed for
single realizations, and it persisted by averaging over many realizations or by doing a
coarse graining in time [7]. A systematic study of finite-size effects would be presumably
rather involved, as inferred from the finite-size analyses for the scaling behaviour of the
relaxation time with the wavelength, see below and Ref. 7. In any event, we did
new simulations for SOS systems of rectangular size, L x M, being rather large in the
transverse direction, M = 200, 500 and 1000, with the wavelength I = 40, 80, and
160, and the initial amplitude Ao of the discretised sine function being Ag = 5.5 and
9.5, at kgT = 0.8J. We found no evidence for a sharpening of the kind predicted
by the continuum theory, see also Fig. 4. In fact, the broadening of the profile of
a single realization near its top and bottom seems to become more pronounced with
increasing L, at constant amplitude. The broadening occurs when the top terrace is
nearly flat, bounded by meandering steps to the neighbouring terraces. When these
two steps annihilate and islands are formed on the top terrace, which eventually shrink
and vanish, the profile takes an almost sinusoidal form. After dissolving the islands,
the top terrace is nearly flat again, with the height of the profile being reduced by one
lattice constant. In that way, one observes shape fluctuations which are accompanied
by two distinct time scales in the flattening process, reflecting the step wandering and
the shrinking of islands, see Fig. 5 and Ref. 7.
To quantify possible finite-size effects, we also considered the mobility pu(© = 0),
defined by
(O =0) = v/h (11)

where v is the velocity of an advancing surface under the action of an external field
h, with h being small {10]. In simulations of SOS models, the change in energy for an
elementary Monte Carlo move may be reduced by h, if the height of a site would be
increased by one, while it remains unchanged by lowering the height by one, thereby
favouring adsorption (condensation) against desorption (evaporation).

From standard nucleation theory, one expects, below roughening, for an infinite

surface
v~ exp(—h/kpT) (12)

giving rise to the vanishing mobility, mentioned above. For finite systems of N x N
sites, one may easily see, by comparing the energy barriers for advancing and receding
surfaces in SOS models, that :

v~ hN? e NI/ET [kpT (13)

i.e. the mobility approaches zero exponentially as the sample size increases. We con-
firmed this behaviour in simulations, which also show rather drastic corrections to the
linear relation between the field and the growth velocity at larger fields, leading to a
quicker advancement of the surface. However, in the profile evolution problem, finite
size effects are much stronger than that implied by equation (13), as the top terrace
is bounded by two steps which effectively means that the mobility of the top terrace
is really a mobility at a small but finite angle O ~ 1/w,, where w, is the width of the
top terrace. Since below roughening, we expect u ~ |O], the top terrace mobility, #,
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for grooves of wavelength, L, scales to zero at most as y, ~ 1/w, > 1/L. This is
very slow mﬁwwomns to zero (much slower than (13)). In addition there are also m::m
size corrections to the surface free energy, so even in the thermodynamic limit it is qu
clear that the mobility singularity is strong enough to remove the § function singularit
as suggested by Spohn{10]. It is clear that a more careful study of finite size effects et
hecessary before one can be sure that even the continuum theory predicts a sharpeni _m‘
in the thermodynamic limit. i
Aside from the problem of finite size effects, the Monte Carlo data m__:mﬁmno.m,,ﬁwwq
fact that there are two distinet time scales which are important in profile decay below
roughening. There is a rather slow time scale during which the two steps bounding the
top terrace wander but do not touch, and a faster time scale, beginning when the ﬁs.m
top steps first touch and islands begin to form. Once the islands form on the top terrace;
each island has a net curvature which drives a relatively rapid island evaporation. ,<<m
have made some preliminary attempts to develop a theory incorporating these two time
scales and one such attempt is as follows. S
>mm:5m~.-m preservation of the sinusoidal profile shape after lowering the mEvmn:mm
by one lattice constant (such truncated sinusoidal shapes have been also observed ex-
perimentally [12]), the extent of the flat top terrace may be approximated by :

wi(A) = %nOmL (A/A+1) (14)

.\» taking integer values. The time needed to reduce the amplitude by one, A, should
include the two timescales, step meandering and island shrinking, see Fig. 5. Neglecting
memory effects, these times are expected to scale with the extent of the top terrace, w;.
Assuming the general scaling behaviour o

A G ul (15)
where G is a temperature—dependent coefficient, implies the scaling of the @Bv:?mo,
A(t, L) = A(t/L%) . (16)

munon.d the prior simulations, an effective scaling exponent a.;; could be determined,
depending rather m?.o:m_% both on temperature and system size, especially the wave-
length L. Its value is clearly larger than in the linear Mullins’ case, T > Tk, where
a = 2; a lower bound a 2 3 was given in[7].

From equations (14) and (15), and going over to a continuum description, one obtains

(o) [ [ () *

where Aq is the initial amplitude of the sinusoidal profile.
The resulting time dependence of the amplitude A(t) agrees surprisingly well with

_g dz” cd

our new simulational data, for moderate wavelengths at kgT/J = 0.8, by adjusting the

coefficient G and setting a = 3, see Fig. 6. However, the Monte Carlo data correspond
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Fig. 6. Amplitude of the groove vs. scaled time, ¢ = tamc(80/L)*/10, with tamc denoting
the number of MC steps per site; a is chosen to be 3. Monte Carlo data for systems of sizes
80 x 1000 (triangles), 120 x 500 (diamonds) and 160 x 500 (circles), at kpT/J = 0.8, are
compared with equation (16), setting ¢ = 3 (dotted line).

to rather small values of w;, and the value of a found may be invalid for larger system
sizes. To gain more insight into the physics controlling the value of a, we have studied
a simpler problem of two wandering steps which annihilate and this we now describe.

4. The annihilation of two wandering steps

We consider the SOS model on a rectangular lattice of (L + 2) x M sites with the
initial height configuration

0 z=1,L+2
1 otherwise

hey(t = 0) = A (18)

We then monitor the time evolution of this isolated terrace. We fix the heights at the
x-boundaries, h1y(t) = hr42y(t) = 0, and take periodic boundary conditions in the y—
direction. This geometry introduces two steps which fluctuate, touch and form islands,
and finally the system reaches the equilibrium flat state. The “amplitude” of the step,
A, is given by

A4(t) = max(Sy hey(t)/M) (19)

where the brackets { ) denote the thermal average.
Using (e—c) kinetics, simulations were done for systems below roughening (kgT/J =
0.8, M = 200, and L ranging from 4 to 32) and above roughening.
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Fig. 7. Amplitude vs. time, measured in MC steps per site, for the two-step SOS model,
equation (17), using Monte Carlo techniques with evaporation kinetics. The system size is
18 x 200; an average over 100 realisations was performed.

. w.o_oé roughening, one readily distinguishes two stages; an example is depicted
in Fig. 7. In the first stage, the amplitude A, fluctuates around one. A typical
configuration consists of two wandering interfaces, separating the “0” regions from the
“1” region in the center of the system. In the second stage, which initiates when the
two interfaces collide, A, decreases quickly. This behavior is similar to that of the aov
terrace of the grooved surface. From analytic considerations {13, 14], related simulations
T.m‘ 16] and experiments [17] one expects that the width of an initially straight one-
dimensional interface of length M grows as t/4, after a short time transient and well
before saturation to its maximal value proportional to M/?. Accordingly, the time
needed for the collision of the two interfaces, t., is expected to scale like L*, provided
M is sufficiently large.

Our data show pronounced corrections to the expected asymptotic behaviour. The
effective scaling exponent, defined by

aepf =dInt./dInL (20)

with.the definition A,(t.) = 0.95 is found to increase from about 2.5, for the smallest
systems, L = 4 and 8, to about 3.1, for the largest systems, L = 24 and 32. The

continuous change in @, reflects, presumably, a transient behaviour, enhanced by the -

boundary-limited fluctuations of the interface. Interestingly, these values for a.sy are
rather close to those for the effective scaling exponent a.s; for grooves with top terraces
of similar extent. Therefore, one may speculate that both scaling exponents, a and @,
approach asymptotically the value of 4 (we tacitly assumed that the meandering stage
leads to the dominant time scale as compared to the dynamics of the islands). This
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hypothesis is supported (at least for a) by a stochastic-Langevin-equation model which
we have developed. In this model, a meandering wall lies between a perfectly reflecting
boundary and a perfectly absorbing boundary. If the interface starts out near the
repelling wall, fluctuations drive it toward the absorbing wall, which is at a distance W
from the repelling wall, and eventually the interface is stuck to the absorbing wall. This
system clearly shows, after some initial behaviour, the ¢t!/4 time scale associated with
the movement of the interface away from the repelling wall, provided the transverse
length M > W2, There is also a shorter timescale, during which “island” shrinking
occurs, which initiates when part of the interface first sticks to the absorbing wall. This
implies that the overall time to stick to the absorbing wall scales as W*.

Of course, additional analyses are needed to substantiate the suggestion that the
asymptotic exponent is 4, especially for the grooved surface consisting of an array of
meandering and interacting steps.

Above roughening, the amplitude of a single step, Ag(t), is observed to decay expo-
nentially, as is the case for the grooved surface.

From the analogy to the problem of two annihilating steps, one may readily explain
the non-monotonic dependence of the relaxation time of the grooved surface on the
transverse direction M. Certainly, in the one-dimensional limit, M = 1, the flattening
occurs most rapidly, see Fig. 5. For intermediate values the decay is observed to proceed
most slowly, because the wandering of the steps is limited by an amount proportional
to M1/2. Finally at large M one expects a slow decrease in the decay time due to the
greater probability of a “rare” large step fluctuation leading to premature islanding of
the top terrace.

5. Summary

The equilibration of grooved surfaces has been studied using various theoretical
approaches, including extensions of continuum theories and Monte Carlo simulations.
New results have been obtained for particle transport by evaporation—condensation.

Above roughening (by going either to the one-dimensional situation or to higher
temperatures), the observed broadening of the profile shape, as compared to the sinu-
soidal form, and deviations from the exponential decay law may be reproduced by an
extension of the classical theory of Mullins, taking into account the anisotropy of the
surface free energy.

Below roughening, modifications of the continuum theory are needed, which predicts
a sharpening of the profile shapes, to reproduce the profiles found in Monte Carlo
simulations. For instance, finite-size effects in the inclination—dependent mobility seem
to play an important role. .

To explain quantitatively the scaling behaviour of the relaxation time with the
wavelength, L, of the groove, it is necessary to combine the annihilation dynamics of
the top terrace with the repulsive spreading of the steps on the sides of the profile. For
evaporation-condensation, just considering the top step annihilation leads to the scaling

T~ L*, which gives an exponent much larger than the linear prediction 2.
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