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We analyze quantum-statistical properties of field modes in nonlinear optical pro-
cesses. In particular we study mode entanglement in a process of degenerate and
non-degenerate multi-photon down-conversion with quantized pump. We study in
detail how the degree of entanglement depends on initial statistics of the pump
and the down converted modes. We analyze the efficiency of the energy transfer
between quantum fields in the processes under consideration. Other nonclassi-
cal effects such as spontaneous disentanglement, and production of squeezed and
sub-Poissonian states are discussed.

1. Introduction

In recent years a great deal of interest has been paid to an investigation of non-
classical effects [1] appearing during an interaction of a field mode(s) with a material
medium. Among various processes a privileged role was assigned to a degenerate and
non-degenerate two-photon down-conversion [2]. ‘These processes refer to a situation
when pairs of highly correlated photons are generated out of the pump mode. In the
degenerate down conversion two photons produced out of a single pump photon have
the same frequency, polarization and a wave vector (i.e. in the degenerate process
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two Em.:som_ photons are produced). On the other hand, in a non-degenerate dowp
oo:<m.~m_o: process two “distinguishable” photons are produced.

It is generally assumed that if the pump mode is initially prepared in a highly excited
coherent state, then it can be treated as a classical field. In this case the interaction

Im.Ew_noims describing the degenerate down conversion takes the form (in what follows
we will use the interaction picture)

HE™ = Maly(a)? + 922, (1)
while the non-degenerate process is described by the interaction Hamiltonian

AP = A, [yal8t + v*ab). (2)

The operators g, ﬁﬁ&, wJ describe an annihilation and creation of photons of the mosws-.

oo~.~<m;.m.m_ modes. The coupling constant Ad(n) is proportional to the second order po-
larizability of the medium (crystal) mediating the process. The pump mode is assumed
to be classical with the amplitude v and frequency w,.

.: is well known today that two-photon nonlinear processes described by the Hamil-
ﬁo.Ew:m (1) and (2) give rise to quadrature squeezing, i.e. in these processes light fields
with reduced quantum fluctuations can be produced [3]. In real experimental setups
ﬁ.rm system is optimalized to obtain maximum squeezing. Production of highly squeezed
light is closely connected with an intense transfer of energy from the pump mode to the
down-converted mode(s). Generally speaking, in the parametric processes described by
Eqs.(1) and (2) it is valid that higher the amount of energy transferred from the pump
to the down-converted mode(s), higher the degree of squeezing in the down-converted
mode(s). Large amounts of energy (even for an intense pump) can be transferred only
when the interaction time is sufficiently long. The analysis of the down-conversion
processes on a longer time scale forces us to take into consideration at least two ef-
fects. Firstly, we have to take into account the depletion of the pump mode when
large amounts of energy are transferred to the down-converted mode(s). Secondly, we
have to include the back action of the down-converted mode(s) on the pump mode.
The pump depletion and the back-action of the down-converted mode(s) on the punip
.Eo&m can be taken into consideration by treating the pump mode as a quantized field,
Le. by introducing into the models (1) and (2) quantum variable describing the pump
mode. The simplest and most straightforward way is to treat instead of the interaction
Hamiltonians (1) and (2) the models [4]

Ha = M[(a')2e + a2el], (3)

and

Hy = Ap[abte + abet), . (4)

The Ewam_no:mm:m {3) and (4) describe a physical situation when a nonlinear crystal is
Uﬁmhmm Into a resonator which supports the modes entering the interaction. Further, we
will assume exact resonance between the pump mode and the down-converted modes i.e.

-
/
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we = 2w, for the degenerate case and w, = w, -+wy, for the non-degenerate process. This
formulation of the problem enables us to take into consideration besides the depletion
of the pump mode and the back action of the down-converted mode(s) also the effect of
initial quantum-statistical properties of the pump mode on the dynamics of the system
and, in particular, on noncladsical properties of down-converted modes.

The relation between the process with the quantized pump [Hamiltonians (3) and
{4)] and its parametric-approximation version is not as straightforward as it can be
assumed at the first glance. Generally it is believed that the parametric approximation
can be easily performed providing the pump mode is initially in an intense coherent
state. In this case the substitution é — v is usually performed (working in the in-
teraction picture). Nevertheless we have to stress that such substitution (parametric
approximation) is justified only for a short interaction times, i.e. for times smaller than
te = (Adm)l7]) ™" (for more details see below). Besides this restriction we have to take
into account the fact that the parametric approximation cannot be straightforwardly
applied for multi-photon processes [5).

The degenerate two-photon down-conversion model in the parametric approximation
(1) can be considered as a special case of a more general process of k-photon down-
conversion with the interaction Hamiltonian

HE™ = My + 97k, (5]

In analogy with two-photon (squeezed) states for k = 2, it can be naively expected that
k-photon process should give rise to k-photon states. A detailed analysis of the model
(5) (for k > 2) revealed that this approach faces serious mathematical difficulties [5]. In
particular, it has been shown that the time evolution operator gll&bmﬁnlu related
to the Hamiltonian (5) leads to divergencies in the mean photon number of the down
converted mode in finite times. One possibility how to overcome these divergences has
been proposed by Hillery [5], who has pointed out that the divergences can be removed
by quantizing the pump mode, i.e. by using instead of (5) the interaction Hamiltonian
of the form

Hi = Ml(@h)*e+ aket], (6)
While for k¥ < 2 the replacement of the pump mode operators by ¢ numbers does
not formally limit the parametric approximation in the case & > 2 the parametric
approximation will be either impossible or at least limited to finite times [5].

The parametric approximation (i.e. the substitution é — 7 for a coherent pump
with amplitude ) for any pump state was analyzed récently by Hillery and co-workers
[6]. Following their treatment we consider the degenerate two-photon down-conversion
process (3) with an initial-state vector

[¥(0)) = 14(0))al¥(0)). (M
and the time-evolution operator given in the interaction picture by

Ua(t) = exp[—idst(at?e + a’el)). (8)
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Now we have to expand the given pump state [%(0))c in terms of coherent states

WO =+ [ &8 (100,15, 9)

N.—HQ ﬁmu@: ﬂrm wnm.zgw‘n.& i i
Hv&.ﬂ&.gmﬂﬂ:u a HOVQBNH_—Oﬂ C. _U@ € or ea en
ma@ﬂm m@@mmmﬁm—vu le _@_ ﬁmu an m%v@: Q w. r Or OCTOH t

W) == [ a8 41900 Dat(Bat? 4 747
- <(Bl¥(0))c exp[—idst(Ba’? + gra N1%(0))a|B).. (10)
This 5.:& of the parametric approximation clearly shows that an “incoherent” pump
mode, i.e. the pump mode prepared in another state than the coherent one, leads to 3

strong correlation Amb.nmam_oao:& between the pump and the down converted mode(s)
[in m:m_omoﬁ.a way this treatment can be adopted also for the non-degenerate case]

speaking, the generalized barametric approximation is not valid for times beyond ¢
. T(%ﬂ L. a.evowm n. is the initial pump intensity. ¢
4 nﬂrom origin of the limited applicability of the parametric approximation is not only
ictate E the amount of energy transferred from the pump to the down-converted
mode(s), i.e. by the pump depletion, but as we said earlier also by the back action of
moé:-aowuiw;wa mode(s) on the pump mode. The back-action leads to an o:nmzm_maose
.?oﬂm_mfo:v ._umﬁéoob the pump and the down-converted mode(s). Which means that
if each Eo.mo is .E a pure state initially, i.e. the initial state vector of the whole system
can be written in a factorized form [y(t = 0)) = [¥)a ® [¥)e, then at t > 0 the state
vector [1(t)) cannot be expressed in a form u .

[(0) = 1%(1))a ® [ (2))..

M,aoﬂ %_m fact that the tota)] state vector cannot be factorized into a product of vectors
ﬁamnh_ ing the pump msm the down-converted mode(s) separately it follows that due
© the quantum interaction the pump modes evolves from its pure initial state into a

as So.: as quantum-statistical properties of the down-converted modes. In our discussion
we will noznmanwao” our attention only on those physical processes in which dissipative
influence of an environment can be neglected. ,,

2. Dynamics of lossless down-converters

The dynamics of the Eoml%oi&.:om by the fully-quantized Hamiltonians (4) and {6)
om:moa. be generally described in terms of exact analytical solutions {7]. Nevertheless, a
numerical treatment of the problem is very effective [4, 8, 9]. This numerical approach
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is based on a numerical diagonalization of the interaction Hamiltonian on dynamically
invariant finite subspaces labeled by the eigenvalues of the integrals of motion:

F s Y il
Le= e ; T for non-degenerate down conversion,
D=alta— b
(11)
M=ata + kéte, for k-photon down conversion.

From the“above definitions it follows that [A,,L] = T@Eb_ = 0, [Hx, M] = 0 which
enables us to label the Hilbert space H of the quantum system in the case of the non-
degenerate process {4) as

H=Ha®Hy@Hc=®p,.Hp,r, (12)

and in the case of the degenerate k-photon down-conversion we label the corresponding
Hilbert space as

H=Hs®@H. = DyHn, (13)

where 7, denotes the Hilbert space of the particular mode z. The subspace Hp 1 with
D > 0 is formed out of the Fock basis vectors {ID+ m)a|m)s|L — m).,m =0,...,L}
(with the dimension L + 1). The subspace H s is formed out of the basis of Fock state
vectors {|M — km),|m).}. The dimension of this subspace is [M/k] + 1 where [z] is
the integer part of . The values D, L (characterizing the non-degenerate process) and
M (corresponding to the degenerate process) are integers being the eigenvalues of the
corresponding operators D_ L and M. On the subspaces Hp ; and H s the interaction
Hamiltonians in the Fock basis take the tridiagonal form

0 he 0 O
hg 0 hy O .
0 hy 0 hy ... u : (14)

0 0 Ay O

where h,, = [(L — m)(D + m + 1)(m + 1)]"/2 with m = 0,...,L — 1 for the non-
degenerate process and h, = [(m+ (M —km)! /(M —km—k)] withm = 0, .. ., [M/k])
for the degenerate case. The mumerical treatment of the problem consists now in the
lumerical solution of the eigenvalue problem. In the case of the degenerate k-photon
down conversion we have to solve the eigenvalue problem for the interaction Hamiltonian
(6) (we remind that we work in the interaction representation)

He|B;(M)) = E;(M)|E;(M)), (15)

with eigenvectors |E;(M)) given in the Fock basis by the relation

[M/k]
E;(M)) = 37 cim(M)km+ 2)alM ~m)e, 2= M — k[M/k]. (16)

m=0
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In the case of the non-degenerate process (4) we solve the eigenvalue problem
HnlE;(D, L)) = Ej(D, L) E,(D, L)), (17)
with the eigenvectors

L
[E5(D, L)) = 3 ¢jm(D, L)|D + mja|m|L ~ m).. (18)

m=0

Iinding the actual values of the eigenvalues £;(D, L) [E;(M)] and the coefficients
&.:.;b‘ L) [¢im(M)] we can construct the evolution ovogﬁow describing the time evo-
lution of the quantum system under consideration (we assume the exact resonance
between modes). For example, in the case of the degenerate k-photon down conversion
the evolution operator in the interaction picture reads

) ) oo [M/H
Ur(t) = exp(=iflgt) = 3~ S =500 5, (a1 (B, (1)), (19)

M=0 j=0

O_uSocm_.f wﬁw_.ﬁ:m this operator on any initial state 1%(0)) we obtain the corresponding
time m<o_:90~.__ Le. [9(t)) = Up(t)[1(0)). The given numerical treatment limits us (from
the computational point of view) to the region of smaller intensities of the input states
(up to a few hundreds input photons).

~ Due to the complex dynamics induced by (4), (6) the state vector l4(t)) cannot be
in general, fot time ¢ > ( factorized, which means that the modes under nozmamsiouu

of the degree Om. entanglement between the modes [9]. The von Neumann entropy S,
[10] of the mm;_oim:. mode z is a measure of the purity of the mode and it enables
us to quantify the degree of entanglement or correlation between the modes. The

Mos 2@55:: entropy S, is defined as (we use notation with the Boltzmann constant
B =

Se = =T, Ama In Ea“T Amov

where g, is the reduced density matrix of the particular mode

Oy = Hﬁﬁwﬂ&w\m‘ AMHV
and p is the density matrix of the whole system. The trace is performed through all
modes except z.

In the present paper we limit ourselves to the case when the initial state vector of the
whole system [pump-+down converted mode(s)] can be factorized, i.e. to those states
‘ﬂr.@w can be written as a product of pure states of the particular modes. Consequently
initially the marginal entropies of modes are equal to zero . “

.W&THD =0 for all . AMMV
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In addition, if we suppose that the quantum mechanical system is isolated from an
environmental influence, then the entropy of the whole system at ¢ > 0 equals to zero

S=-Tr{plnp} = 0. (23)

Using the Araki-Lieb theorem [10] we can find the following inequalities for marginal
entropies of corresponding field modes in the processes under consideration:

[Sap = Se| <5 < Sup+Se,  non-degenerate down conversion
(24)
|Sa— S| <S5 < S, + 5., k-photon down conversion.

Moreover, with respect to Eq.(23), the following relations between marginal entropies

are valid [9]

Sye =Sa , Sac=3S5 , Say=3S., for non-degenerate down conversion
(25)

Se= 8, for k-photon down conversion.

The relations (25) can be used to define the index of correlation {11] between modes
involved in a nonlinear quantum-optical process. In particular, for processes (4), (6)
the index of correlation can be expressed in a form:

Ioy—c = Sap +S. — 5 =125, for non-degenerate down conversion
(26)
Ioce=8,+8.~-5=25,, for k-photon down conversion.

From relations (26) it directly follows that in the parametric approximation there is
no entanglement between the pump and the down-converted modes {because S. = 0).
Nevertheless, in the non-degenerate case the signal and idler modes can still be highly
correlated.

In some situations it is not straightforward to calculate the marginal entropy of the
field mode under consideration even though the reduced density matrix p, is known.
Therefore it turns out that it is more convenient to use the linearized, entropy [10]
defined as

S =1-"Tr:{pz}, (27)

instead of the von Neumann entropy S, in the definition (26) of the index of correlation.
The linear entropy S2°" equals to zero for any pure state and for any statistical mixture
state Sg" > 0. Moreover S represents a lower bound of the corresponding von

Neumann entropy S [i.e. S (¢) < S (t)].

3. Degenerate k-photon down conversion

"The k-photon down conversion process with the quantized pump mode is in the case
of the exact resonance (i.e. w, = kw,) governed by the Hamiltonian {6). It is instructive
to start our analysis of the dynamics described by the Hamiltonian {6) with the most
simple case of k = 1, corresponding io a resonant linear coupling between modes a and
c.
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3.1. The quantum linear coupler

Hrm linear coupler [12] represents a special type of the degenerate down conversion
described by the Hamiltonian (6) with k = 1. The dynamics of the linear coupler cap
be mo.?& in a closed form. This can be shown easily by noticing that the interaction
Hamiltonian can be written in terms of the generators SU(2) Lie algebra {13]

Hy=XM(Jy + 7)) (28)
where

s g s - 1

Jy=ad'e | Jo=at | jy= msg —éle). (29)
Using the disentanglement theorem for SU(2) algebra [13] we can express the evolution
operator Uy (¢) as

I

Uy (t) exp[—id¢(Jy + J_)]

= exp[—i tan(A;¢)J; ] exp[—21n cos(A1t)Js] exp[—i tan(Ay¢)J_]. (30)

Let us assume the bump mode is initially (i.e. at time ¢ = 0) prepared in a coherent ‘

state |v). w:.m the down-converted mode is at ¢ — 0 in the vacuum state [0)s. Using
(30) we obtain for the state vector of the total system [%(t)) at t > 0 the expression

(@) = le(t))aly(2))e, (31)
describing the signal and the purmp as a product of two coherent states with amplitudes
o(t) = —iysin(\t) | 7(t) = ycos(Ast). (32)

Hrm obtained results (31), (32) reveal several interesting features. Firstly, the two-mode
linear coupler does not lead for the chosen initial state to entanglement between the
pump and the signal [Sa(t) = S7T(t) = 0). Secondly, the coupled modes exchange
their energy in a coherent manner, i.e., they remain in coherent states for any t > 0.
The pump mode can transfer comipletely: its energy to the down-converted mode, i.e. at
certain moments of the time evolution the pump becomes completely depleted and the
barametric approximation cannot be adopted . Nevertheless at the early stages of the
SSm.mSUESOB (Mt < 1), when just a small fraction of the pump energy is transferred to
n.rm signal mode, the parametric approximation can be safely performed. This paramet-
Iic approximation then changes the evolution operator (30) into the Glauber-Sudarshan
displacement operator [14].

<.<a have to stress here that even in the case of the linear coupler two modes under
wo.:w&mwmso: can become entangled. The degree of the entanglement depends on the
_:;._m._ state of the pump-signal system. To illustrate this sensitivity of the entanglement
on initial conditions we consider three cases. In the first case we will study consequences
.Erm: the pump is initially prepared in some other state than a coherent state, namely
In a squeezed vacuum state (at the input the signal is considered to be in the vacuum
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state). In two other cases we will assume again a strong coherent pump mode, but we
will assume that the a mode (i.e. the signal) is also excited. In this case we will consider
firstly the signal mode to be initially in a coherent state and secondly, we will analyze
the situation when the signal is initially in a Fock (number) state.

Now, let us consider the case when the signal mode is prepared initially in the
vacuum state and the pump mode is initially in a squeezed vacuum state [1], i.e.

T\\Au_ = Ovv = _Ovn_dv? _dva = .WGAGV_OVE Awwv

where S.(n) = exp[n(¢t)? — 7*¢%] is the squeeze operator. Using the unitarity of the
evolution operator (30) and the fact that U, (t)10)4]0)c = [0)4]0)., we can write the state
vector |(t)) which at ¢ = 0 takes the form (33) as:

[¥(2)) = U1(8)Se(m)0)a]0). = $(n,2)[0)a[0)., (34)
where
CS(n,0) = expln(e (1))? - @))%, ét) = T, (el (e). (35)
Simplifying the expression (34) we can write |3(¢)) as

[¥(t)) = exp[—sin® A t(nat? — n*a?) 4 cos? it{net? — n"é?%)

~isin 2Xt(natet + *aé)]|0),/0)., (36)

from which it follows that [¥(t)) cannot be factorized at ¢ > 0 and that the pump
and the signal mode become entangled at t > 0. This entanglement has its origin in
the presence of the cross term exp(éatel — € aé) in Eq.(36). This term is responsible
not only for the entanglement between modes but it also gives rise to the two-mode
squeezing [1, 11, 15] which can be obtained in the state (36). Moreover as seen from
Eq.(36), the signal mode becomes also squeezed when it is initially linearly coupled to
the squeezed pump. In other words, the fluctuations from the pump are transferred
In a phase-sensitive manner to the signal mode. For details on statistical properties of
two-mode states (36) see Ref.{16]. To evaluate an explicit expression for the degree of
the entanglement between modes we rewrite the initial squeezed vacuum state (33) as
a one-dimensional superposition of coherent states {17):

_snumm%\@xnllwl_iemngzg (37)
| 4
where By = (1 - £2)1/4(27€)~1/2 is the normalization constant. Due to Eq.(32) and
Superposition principle (the initial squeezed vacuum is represented as a continuous
Superposition of coherent states on the line) we obtain the time evolution in the form:

[¥(t)) = Be \8 dv exp AI_Imlmm mv [ = dysin A1t),|ycos Ayt)... (38)
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If we analyze the time evolution at the initial stages, i.e. for times At < 1 where we
can use the approximation [ — tysin A1t),]ycos A)e > | = iyAit)aly)e, it is then clear
that the modes becomes strongly entangled. This is a consequence of the fact that the
pump mode was initially prepared in a highly nonclassical state. In a straightforward
way we can derive the expression for the entanglement parameter

2 - 22
2 — £2(1 + cos 4):%)

%Mﬁ:.ﬂ. — “—'

(39)

which reaches its first maximum at Ait = m/4 and is equal to 1 ~ /T — &% In other
words, higher the degree of squeezing of the initial pump mode is higher the entangle-
ment between the modes at ¢ > 0. In general, it is true that the maximum degree of
the entanglement between the modes can be observed at the time moment Al = /4
for any initial pure states of the modes.

. Now we will change the input statistics of the signal mode. If the signal mode is
ﬂ:wSm.:v.. prepared in a coherent state {a)q and the pump mode is in the coherent state
e, Le. .

[4(0)) = la)al)e, . (40)
then, using. the explicit expression (30) for the time m<or_ao= operator U, (t), we find

that at ¢ > 0 the state vector of the pump-signal system can be expressed as a product
of two coherent states

_.%vi = _Qﬁvva_.i“vvf Tﬁ:

with the amplitudes
a(t)

7(t) = ycos(At) — iasin(Ag1).

I

acos(A1t) — éysin(Ast),
(42)

From Eq.(41) it follows that the two modes (the pump and the signal) are disentangled
for any t > 0 providing they are prepared initially in coherent states la) and |y)e,
respectively. Nevertheless, as it is seen from Eq.(42), the parametric approximation can
.oosmwmnm:z% be applied only in the case when the amplitude of the initial pump mode
18 much larger than the amplitude of the signal mode ([y| > |af). Simultaneously, this
approximation is valid only for times for which A1t < 1 (ie. the pump depletion can
.Um neglected). Up till now we have considered the ¢ mode as the pump because its
E:.S_ intensity is assumed to be much higher then that of the @ mode. In fact a better
choice is to identify the pump with that mode which in the initial stages of the time
evolution losses photons, i.e. d(fipump)/dt < 0. From this point of view the role of the
pump for coherent inputs in both modes depends on the relation between their phases.
.135 Eq.(42) it is seen that if $a — ¢ = ~7/2, then in the initial moments the energy
1s transferred from the c-mode (as the pump) to the a-mode, but for the phase relation
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$a — ¢ = w/2 the situation is opposite and the a-mode functions as the pump (for any
nonzero amplitude even smaller than an amplitude of the ¢ mode).

As a third example, in which we illustrate the sensitiveness of the degree of entan-
glement between two modes of the linear coupler on initial conditions, we assume the
pump mode to be initially prepared in the coherent state |7)c and the signal mode in
the Fock state |N), with N photons, i.e.

[(0)) = [N)aly)e. (43)

To find a compact expression for the time evolution of the initial state (43) we expand,
the number state [N}, in terms of coherent states [18], i.e.

[¥(t = 0)) = [N)aly)e = mi&\c dg exp(~iNgp)lae)q @ [7)., (44)

where a can be chosen arbitrary and By (o) = VNI QlZa%\w\Awi is the correspond-
ing normalization constant (for concreteness one can choose o = VN ). According to
Eqs.(41), (42) and using the superposition principle we obtain:

27

[#(t)) = Bn(a) ] dpexp(—iNp) x

Jae™® cos(Ayt) — iy sin(A12))aly cos(A1t) — ice'® sin(A;t)).. (45)

From Eq.(45) it is clear that the state vector [¢(t)) cannot be factorized and that the
two modes under consideration become entangled, i.e. S {t) >0 for ¢t > 0. It can be
shown that the entanglement parameter S reads

mﬁgzuT W ?R v ?Omwraz-a?;;ss_m Ee
m=0

and is independent on the initial amplitude 7 of the coherent, pump. As we have noted
’ . . . 2

earlier maximum entanglement [in this case equal to 1 —4~~ Yom QMV ] can be observed

at time A;t = /4. On the other hand, during the first instants of the time evolution,

Le. for A\t < 1, the modes do not entangle, providing v > N. In this case the state
vector (45) can be approximately written in the form

[¥(6)) = exp[~idiyt(al + &)]|N)aly)., (47)

Le. under certain conditions the parametric approximation can still be adopted. From
Eq.(47) it follows that the down-converted mode evolves into a displaced number state
[19].

We can conclude that as soon as one of the two modes of the linear coupler is
Initially prepared in a nonclassical state, the modes become entangled at ¢ > 0 and the
Parametric approximation cannot be adopted except the region A\yi < 1 for a coherent
Pump. ,
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We have already demonstrated that the fields in the linear coupler can entangle dur-
ing the time evolution. However it can be shown that there are moments (independent
on the initial state of the system) at which the field modes become disentangled. T,
show this we write the initial state of the system in the form

1%(0)) = [#1)al¥2)e = Ou(a, a")[0)a0.(c, éM)jo)., (48)

where O, are operators relating the actual initial state [%;)= to the vacuum [0);. We
know that the relations for the transformation of the operators & and ¢ under the action
of the evolution operator (30) are:

Oya01

I

acos(A1t) + iésin();1)
L (49)
U180} = iasin(Ast) + écos(Ay1),

From these equations we can find three important time moments. First, at A\t = 27,
the state of the system is restored, i.e. the dynamics of the linear coupler is periodic in
time. The other two time moments are A1t = r and A f = 7/2. At the time Ajf = 7 the
modes are disentangled and they differ from the initial state only by phase shifts. At
the moment )¢ = 7/2 the modes are disentangled as well, but they interchange their
statistical properties completely. Such a behavior is typical only for the linear coupler
and is absent in the case of the down-conversion processes with &k > 1.

The linear coupler, which represents a lossless beam splitter, can be used also to
disentangle states [20]. For example, if a two-mode squeezed vacuum state is sent
into a lossless symmetrical beam splitter then two single-mode squeezed vacuum states
emerge (the output of the 50-50 beam splitter is equivalent to the state in the linear
coupler after A;¢ = 7/4). The initial correlated state is transformed by this device into
two identical uncorrelated single-mode states which can be used to measure an optical
phase shift with accuracy inversely proportional to the intensity of the measured single-
mode squeezed vacuum state [20]. In the improved scheme one can use instead of the
.nio-anm vacuum a displaced two-mode vacuum as an input correlated state which
1s transformed by the linear coupler (after At = 7/4) into two displaced single-mode
vacuum states. This kind of disentanglement is a consequence of the periodicity of the
lossless linear coupler, which is fully absent in the case of multi-photon down conversion
processes.

3.2. Signal-pump entanglement in two-photon down conversion

In the previous section we have shown that for coherent input states of the linear
coupler the pump-signal state vector can be factorized for any ¢ > 0, i.e. the pump
and the signal remain in the pure state during the time evolution. This preservation
mm the purity of the pump and the signal mode is a very exceptional property of the

_Somm coupler. In this section we show that in the two-photon down-conversion process
described in the interaction picture by the Hamiltonian

Hy = Ap(at?e + a2t (50)
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the situation is different. First of all, we should stress that dynamics of the quantum
mechanical system corresponding to the Hamiltonian (50) cannot be described in an
analytically closed form [7], but has to be studied numerically. For details of our
numerical approach we refer the reader to the papers [8].

1.0

0.8 -

0.6

corr

1

290.4

0.2 4

0.0
0.0

Azt

Fig. 1. The short time evolution of the entanglement parameter S¢°" (t) for the two-photon
down-conversion with the initial state 10)al7)e. The intensities of the initial coherent field
were set nc = 1 (X points), nc = 9 (long-dashed curve), n, = 25 (solid curve) and n. = 49
(short-dashed curve). The disentangled period becomes shorter for higher intensities.

Let us assume the signal mode initially in the vacuum state [0)e and the pump
mode in the coherent state |y),, i.e. [%(0)) = [0)a}y)c. With this initial state the signal
and the pump in the linear coupler remain in pure states for ¢ > 0. In the two-photon
down converter the modes become entangled. Their entanglement parameter ST [see
Eq.(27)] starts to be positive at ¢ > 0 and none of the modes will evolve into a pure
state again. Nevertheless, for a short range of time fi.e. for times t < {A2fv[)~1 ] the
entanglement between the modes is still very small and approximately equal to zero.
During this time interval the parametric approximation can be adopted. To see this
we perform a formal expansion of the evolution operator U, (t) given in the interaction
picture by expression

< s o~ (—it) /. \n
Us(t) = exp(—itH,) = MU T Amuv (51)
n=0
and we keep only two first terms in this expansion, i.e.

Ua(t) ~ 1 — itH,. (52)

Using (52) we find the approximate solution for the state vector of the pump-signal
system in the form:

(1) = D2t = 0)) ~ [[0)a — ivV2Ao7t12)a] 7). = [b(t))alte(t)).. (53)



168 G. Drobny et al

This approximation can be adopted for times 7 < t., where

1
V2sly|

It is obvious now that for these times the entanglement parameter S s equal to
zero Amm :5. state vector (53) can be written in a factorized form) and the parametric
approximation can be safely used.
o In Fig. 1 we plot the time evolution of the purity parameter for several values of the
Initial intensity of the pump mode. From this figure it follows that higher the initial
Intensity of the pump more rapidly the entanglement parameter increases and shorter is
the time during which 5S¢ can be approximated by zero [in accordance with Eq.(54)].
The increase of a mutual correlation {entanglement) between the two modes is ac-
companied with a significant changes in statistical properties of both the pump and the
mmmzmm modes. To study these changes we evaluate the Q-function, the photon number
distribution and a degree of squeezing corresponding to the signal and the pump mode.
The Q-function (quasidistribution in the phase space) is defined as [21]

i, =

(54)

Q:(8) = ~(Blx19), (55)

the marginal photon number distribution (PND) of each mode is given by the relation
Po(n) = (n|ps|n), (36)

where the reduced density operator j, (with £ = a, ¢) is defined by Eq.(21). To measure

the quadrature Squeezing we utilize two quadrature operators [22] for each mode (i.e.
T=aorz=c)

;VNH - ..m.ml&um.‘m4m:vu M>\ _ &ml&nl&.wm.@n Amﬂv
3 r — 22 = .
The degree of squeezing can be defined as
SE=4(AX)Y — 1, SY =4((AT,)?) -1, (58)
where ((AXo)?) = (X2) ~ (X,)2 , ((AV2)%) = (¥2) — (V,)?. When $X(S¥) becomes
negative quadrature squeezing appears and S¥ = —1 (SY = ~1) corresponds to 100%
squeezing.

Ho.mmwnlvm mﬁ.mimsﬁz properties of the modes in more detail we evaluate also the
deviation of the given state from the minimum uncertainty state (MUS), i.e. we evaluate
the parameter -

AT ~ @

,kum Uz parameter equals to zero only for MUS, i.e. states minimizing the ::nm;m&bﬁ%,
reiations.

uy = ((AX,)
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Fig. 2. Statistical parameters of the down-converted mode for ne = 9: (a) the Q. function for
Azt = 0.2; (b) the @, function for Ayt = 0.5; {c) the photon number distribution at Ayt = 0.2;
(d) the photon number distribution at Ap¢ = 0.5; (e) the time evolution of the squeezing
parameter and (f) the time evolution of the MUS parameter.

In Fig. 2 we plot various parameters describing statistical properties of the signal
mode obtained via two-photon down-conversion with the pump intensity y? equal to
9 and for two values of the interaction time, Ayt = 0.2 and Ayt = 0.5 As seen from
Fig. 1 the entanglement parameter at Azt = 0.2 is approximately equal to zero (i-e. the
signal mode is in a pure state), while S at Ayt = 0.5 is significantly greater than
zero. In Fig. 2a contour plots of the Q-function of the signal mode at Ayt = 0.2 are
shown. We see that the initial circle contours corresponding to the vacuum state are
transformed into elliptical (squeezed) contours. The photon number distribution {see
Fig.2c) exhibits significant oscillations. Taking into account that at Aot = 0.2 tBe degree
of squeezing in the signal mode is very large (see Fig. 2¢) and the fact that the signal
mode is in a pure state which simultaneously is a MUS (see Fig. 2f) we can conclude
that under the given conditions the squeezed vacuum is produced in the signal mode,
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Fig. 3. The same as Fig.2 but for the pump mode.

which Bom:m.a:mn ﬁflzm time period for which ¢ < te [see Eq.(54)] the state vector
11%(2)) of the pump-signal system can be written approximately in a factorized form

[4(8)) = Sa(=ir1)[0)a [)., (60)

where S, (n) is the squeezing operator. From here it is clear, why the two-photon down
converter can serve as device in which squeezed states can be produced.

m.m we analyze statistical properties of the pump mode in the process under consid-
eration at Ayt = 0.2 we find that the pump mode at this time is approximately in a
coherent state, i.e. the @-function is represented by circle contours (see Fig. 3a), the
photon number distribution is Poissonian (Fig. 3c), there is no squeezing mxr.mv?m_m by
the pump (Fig. 3e) and finally the pump mode is in the MUS (Fig. 3f). On the other

changed _uv.\ the back wan.mo: of the signal mode. First of all, the pump is not in a pure
state at :.:m moment Am,_.m. 1), the @-function is “deformed” (Fig. 3b), and the photon
number distribution exhibits oscillations (Fig. 3d). Moreover the pump mode exhibits
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large degree of squeezing (Fig. 3c). Needless to say the pump mode is not in the MUS
at this moment (Fig. 3f). Obviously under this circumstances one cannot adopt the
parametric approximation.

Except the above discussed non-classical properties of the modes we should also
mention an interesting effect related to the energy exchange between modes, namely
the fact that the pump mode cannot be fully depleted in the case of the initial state
[0)a]7)e- Moreover, for ¥ 3> 1 the pump mode cannot lose more than 2/3 of its initial
intensity. The energy transfer between the modes in the process of multi-photon down
conversion was studied in [24]. Let us briefly discussed the origin of the ”imperfection”
of the energy transfer from the pump to the signal a mode which is initially empty. The
time evolution of the mean photon number for the initial state [¥(t = 0)) = |0)al7)e
(due to the mutual orthogonality of subspaces H M) can be written in the form

5 2N
Telt) = (O acvo) =< 5 Mo i), (61
=0
where
Ae(N5t) = o(N[a(0103(8)AcUa(t)[0) V). (62)

represents the time evolution of the mean photon number for the input state |0),{N).
(the pump prepared in the number state). In the Fig. 4 we plot overlaps of the state
10)a]V}. with eigenvectors on the corresponding dynamically independent Hilbert sub-
space Hpr (M = 2N), namely the probabilities P(j) = (E;(N)|0)o]|N).|> where the
eigenstates |E;(N)) are given by Eq.(16) [the eigenvalues are labeled by N instead of
M = 2N]. We plot probabilities P(j) for N even and for N odd separately, because they
differ by the number of eigenstates which form” the given input state. It is seen that
for N even the state |0)4]|N). has significant overlap with three eigenstates (nevertheless
a dominant overlap is only with one of them) while for N odd the state [0}4|N), has
the overlap with two eigenstates, i.e. the time evolution [#{N;1)) of the initial state
[0)a|N). can be approximately written as

co,0(N)|Eo(N))+ .
(N 8)) ~ { o) EDIE(N)) + 1 o(N)e B M-y (N)), N even (63)

co,0(N)e BN EG(N)) + co,0( N)e*Be(M|_Eo(N)), N odd

Here lies the origin of the ”inhibition” of the full energy transfer from the pump
mode into the empty a mode. For N even the dominant overlap with the eigenstate
[Eo(N)) directly suggests a significant ”trapping” of the energy in this eigenstate with
zero eigenenergy. For N odd the state |0),|N). consists of two eigenstates |[Eg(N)),
_MLZVV which have up to the sign the same decomposition into a Fock state basis, i.e.
[Eo(N)) =3, com{N)|2m, N—m), |E{(N)) = Yom (=1 com(N)|2m, N —m) and their
eigenenergies are realted as £,(N) = —FEo(N). The eigenstates |Eg(N)) and |E(N))
are orthogonal which means that 3 (—1)™[com(N)]? = 0. This relation also suggests
that the matrix element (E1(N)|fi.|Eo(N)) = 2mm(=1)2ck, is a small number [at
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ﬁ%ﬁévﬂmﬂw @«mlpﬂ%ﬂﬂ?&%ﬁ” Nqu _H _v@.oﬁf_u of the Fock state |0)4|NV). with eigenvectors
v =2 ne with triangles) and N = 26 (line with s Ei
labeled in order of increasing absolute values of &ma:gmummmm E;. auares). Flgensiates arc

MMNMM_MHSMOMMMWMMNM Sm;.;m o_oEm.:n (Eo(N)|n]|Eo(N)), for details see [23]]. From here
S, mm asis of n.rm eigenstates |E;(N)) there is a reduced exchange of en-
ey petween | o ~o:::m:; eigenstates. As a result the pump mode for N > 1 cannot,
il ﬁs_m Mzomm. more than 2/3 of its initial photons. Such “imperfection” of
g g e o:@mwrm to :dwo%.w:ﬁ consequences. In particular, it was shown by Hillery
ey rs [6] that to obtain the signal mode more sub-Poissonian than the pump
moge { .EOWM RM Qﬁw the pump Eoma rwm. to be considerably depleted, namely it has
he Ao an 2/3 of its initial .:;msm;%. Due to the imperfect” down conversion
b el Mwam.vmnﬂmzoﬁﬁ of the m_m?&. mode will be always higher than that of the
pump mod ; :B:mam Mamfoz Om. the obtained results to the case of the initial coherent
i mME WEO. M_m straightforward: the resulting mean photon number nc(t) is
ol go weighted mean photon ::va.nm ne(N;t) from particular subspaces
:;m:m;. ¥ n.r. onmm,\mﬁ the degree wm the squeezing of the signal mode depends on the
e m:m_.% SNM M:o M. Because the intensity of the signal is bounded by the amount of
oo Uomcwcaoa s 28:?05 the pump we can expect the maximum degree of ma:mmi:m
e mrow,w Sﬁm: [see [25]]. In more .Qmam__m these question were analyzed in [24]
(tho o o She ﬂz_ at for ¥ > 1 the mmm.n_mwo.% .Om the down conversion is less than 2/3
pep v:wz an ose more .25: w\w of its :.::@_ intensity) and it was predicted that
o the mawmo_, o§w Em.ﬂw_.ma in the FWE% mxo_ﬂmm squeezed vacuum state this efficiency
e smale 3 Eo wi mo:m:d this effect using numerical calculations. We will also
- B e Qmuou\. of the energy .Em:mmm_. in down conversion process can be

brovea if initially the signal mode is excited. The presence of the signal photons will

“stimulate” a more intensi
o nsive transfer of the energy from the pump mode to the signal

aimwwun ﬂw%acﬁ :m,\.m moo:m.mm_ our w:u.msio: Emﬁ_w on the short time scale which is
ot from ¢ point of view of possible production of non-classical states and effects.

§ Umit we can neglect energy losses due to dissipative coupling of the signal-
pump system to an environment because we can expect that _urm:oEm:o_ommow_ mm:;m?:m

MM”..mem:mm I's (z = a,¢) are much smaller than A27, i.e. a photon can be lost into
environment only after many oscillations of the mean photon number which characterize
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Fig. 5. (a) The long time evolution of the entanglement parameter S (¢) and (b) the
evolution of the mean photon number for the initial state {0)a|y)c. The initial intensity was

set n. = 25.

the energy exchange between the modes.
Let us now turn our attention to a long time evolution of the modes in the two-

photon down converter, when the pump is initially prepared in a coherent state and
the signal mode is initially empty, i.e. |¢(f = 0)) = |0)a|7)c. On the long-time scale the
degree of the entanglement S¢°"" between the pump and the signal modes exhibits a
purely quantum effect of “spontaneous disentanglement” (which for the first time was
reported by Phoenix and Knight in the framework of the Jaynes-Cummins model [26}).
From Fig. 5a it is clearly seen that at certain moments the entanglement parameter
becomes significantly reduced. Comparing the time evolution of S{°'" () and the time
evolution of the mean photon number of signal photons (Fig. 5b) we find that the
decrease of the entanglement parameter is accompanied with the “revival” in the mean
photon number.

In what follows we will estimate the revival-time of the mean photon number (7A.).
We start our estimation rewriting the time evolution of the mean photon number for an
initial Fock state |0),|N). using the matrix elements of 7; in the basis of the eigenstates

|E;(N)):

Re(Nit) = D leso(N)FAE; (N) Al E5(N)) +
> eio(N)ejo(N)(E:(N) il B (N)) cos ([B(N) = B3 (N)]t)  (64)

i<y

vector [Eq.(16)]. The mean photon number is given as a superposition of the finite
number [N (N + 1)/2] of periodic contributions (note that the time dependence enters
the mean photon number only via cosine term). Nevertheless, as was shown above
[see Eq.(jj14)], for even N = 2{ there are only three eigenstates, namely |Eq(2l) = 0},
[E1(20)) and |E5(20)) = E£1(21)) , which have a significant overlap with the input state
and therefore the main contribution to the time dependence of n.(N = 2{;t) comes from
terms with cos[E;(2{)t] and cos[2F£;(2{)t]. For N odd (i.e. N = 2[+ 1) there is only
one important time-dependent contribution which is proportional to cos[2£,(2! + 1)t].

where ¢jo(N) = (E;{N)|0)4|N). is an overlap of the initial state with the given eigen-
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Fig. m.. Amv ‘The short time evolution of the entanglement parameter ST (t) for the pump
mode initially prepared in the squeezed vacuum state (dashed line) and the coherent state

Amomw line). In both cases initially n. = 9. (b) The time records of corresponding mean photon
numbers.

According n.o waAmC in order to obtain the mean photon number for an initially coher-
ent pump (i.e. nrm mput state is considered to be [0}alv).) we have to superpose these
three types of cosine terms with Poissonian weight factors (probability to find an input

within a given subspace). The revival appears when two neighboring cosine terms get’

a B:Eﬂ phase shift of 27. If 7 is large enough then we can limit ourselves to those
terms with N = |y]2. Consequently we get three revival time estimations
2[E1(20+2) - Ey(2])] tg, = 2r,
[B1(20+2) ~ E,(2D)] tg, = 2n, (65)
2 [Eo(21 + 1) — Eo(20 — 1)] tr, = 2n.

A .:sam.wlo& check reveals that tr, X tr, and so we are left with main reviva) time
estimation

_ 2T
Ev(21+2) - E,(2])

tr, = 2tp, A@mv
which is in very good agreement with numerical calculations (see Fig. 5).

In the preceding part we assumed the pump mode to be prepared in a coherent
state and the empty signal. We found that the modes become entangled and that the
parametric approximation cannot be applied beyond ¢, ~ (A27)~1. This behaviour
seems to be quite different from that of the linear coupler for the same input (when
no Q.im:%ﬁdm:a between two linearly coupled modes is established). Nevertheless, the
applicability of the parametric approximation in both cases is proportional to the “aam
scale of the maximum energy exchange between modes. In the linear coupler the modes
exchange fully their initial intensities at ¢ — 7/ [compare with Eq.(49)] while for the
two-photon down conversion the time of the maximum pump depletion is proportional
to (Aay) L.

x.ws.mpomo:m_% to the previous section we will now analyze the influence of the initial
statistics of the modes on the of entanglement between the pump and the signal mode.
We will study the same cases as those for the linear coupler. Firstly, it is of interest
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Fig. 7. Statistical properties of the down-converted mode for the initially squeezed pump with
ne = 9: (a) the Qu function at At = 0.1; (b) the Q. function at Ayt = 0.6; (c) the photon
number distribution at A;¢ = 0.1; (d) the photon number distribution at Azt = 0.6; (e) thé
time evolution of the mean photon number and (f) the evolution of the MUS parameter. Time
is scaled as 1/X,.

to analyze how the mutual correlations and statistics of the modes under consideration
are changed when the pump mode is initially prepared in a highly nonclassical state. In
particular, if we assume the pump mode to be initially prepared in a squeezed vacuum
state |{). and the signal mode in the vacuum state |0}, [see (33)], then we can find
that in this case the strong entanglement between the modes is established much faster
than in the case when the pump is initially prepared in a coherent state (see Fig. 6a).
Simultaneously we should stress that the signal mode in the process under consideration
possesses very interesting nonclassical behaviour which is reflected by the shape of Q-
function (Figs. 7a,b). Hillery and co-workers showed in [6] that rotational symmetry in
phase space of the signal mode is twice that of the pump-mode state. Therefore the Q-
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?:m,:.o: has a symmetrical four-fold structure and the corresponding PND (Figs. 7c d
.m.i:U:m .oma:_mao:m which reflects this four-fold symmetry. From Figs.7 it «o:os\.m ﬁmww
in the given ommm. the signal mode evolves into a multicomponent superposition state
Ed We present in Fig. 8 pictures illustrating statistical properties of the pump mode
It 1s seen that the pump prepared in a highly squeezed vacuum losses its :o:Qmmmmnm_.
properties slowly in comparison with the time scale of the highest pump depletion (i.e
the scale of oscillations of the energy exchange). Fig. 6b confirms the prediction Am.mm.
wvoév.nrmo the energy transfer from the squeezed-vacuum pump to the signal mode
is less :;mdm?m nrw: in the case of a coherent pump (with the same initial intensity)
Konmoéﬁ in the case of the squeezed pump the ”stationary” value of the m:amcm_mﬂmuﬁ.
(i.e. the value of Seorm for large times) is approximately equal to one half of the value
of the entanglement in the case when the pump is initially in a coherent pump.
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From the above we can conclude that photon statistics of the pump and the signal
mode during the first instants of the time evolution is very sensitive with respect to
statistics of input states of the two-photon down converter.

In the preceding part it was shown that a nonclassical pump input leads to a more
rapid establishment of the entanglement between modes in comparison with a coherent
pump input. In what follows we will investigate how the variation of statistics of the
signal mode at ¢ = 0 changes the character of the output states and the entanglement
between modes. We will study the case when both modes are prepared in coherent
states |a)q and |y)., respectively, and the intensity of the ¢ mode is stronger than the
intensity of the a mode, i.e. |y| > |a|. Such input state can approximate {for high
enough intensities) the classical initial conditions with two input laser beams. It can
be expected that such input leads to a production of squeezed coherent states in the a
mode at least at initial stages of time evolution. We should stress that although we call
the ¢ mode as the pump, for non-empty a mode such identification can be misleading
even when the ¢ mode is much more excited than the a mode. As in the case of the
linear coupler, we define the pump as that mode from which the energy is transferred
to the other mode at the first instants of the time evolution. To illustrate this definition
we assume the initial state vector to be

[(0) = la) @ |7) = llale’) @ ||vle*#). (67)
From the expression for the first derivative of the mean photon number in the ¢ mode,
when the initial state vector is given by (67) :

dn.

dt

= 2&z]af?|y| cos(2pa — p. — 7/2) (68)
0
it is evident that for 20, — . = 7/2 there is a gain in the ¢ mode during the first
stages of the time evolution even though the intensity of the a mode is negligible in
comparison with the excitation of the ¢ mode. For 2p, — ¢, = —m/2 we obtain a gain
in the @ mode, i.e. a typical down conversion regime. In the intermediate regime when
20, — . = 0, we have to calculate the second derivative of the mean photon number
{which does not depend on the phase relation between the modes) to find which mode
is amplified during the initial moments of the time evolution:

d%n,

5| = 228(lal’ = aleP 7 — 2. (69)

0

From this expression it is clear that a gain in the ¢ mode for the phase relation 2p,—¢. =
0 is obtained only when the intensity of the a mode is at least four-times higher then
that of the ¢ mode (Jar|? > 4|7|2). So in this case the definition of the ¢ mode as the
pump mode is perfectly fine.

It is of interest to study changes in dynamics when the @ mode is excited at ¢ = 0
and how this dynamics and the entanglement between the modes can be manipulated
through the phase relation between the modes. For simplicity we fix the zero phase
of the intensive coherent ¢ mode (¢, = 0). Dynamics at the early stages of the time



13
{ G. Drobny et al

{a) (b)

|

m

!
ES
o
ad
> ]

!
[~

-4 0 4 8

(c) (9

e

|

-8 -4 [¢] 4 8 Qnm ...» m h 8

@ o
(e) O

Fu >
g | @
i |
& FS
k L!ﬂ'ﬂl}l]ﬂ'JlJl‘J P T T T T L

-8 -4 0 4 8 -8 -4 0 4 8

.m, ig. 9. Q-?:nio:.m of the modes in the degenerate two-photon down conversion with coherent
:W:?M. The wgmrncmwm are v =5 and o] = 3. (a) The Q. function for a =3 at Ayt = 0.1;
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© = =0.15. - :
sketched by circle, 2 5. The position of the initial Q-function (at t = 0) is

mMo_:ﬁo: can be visualized via (-functions of the modes for ¥ = 5 and la| = 3 (see
the Fig. 9). The Q,-function of the a mode coincide for Aty < 1 with that one which

can be obtained using the i imation, i i
parametric approximation, i.e. which
squeezed coherent state Bk

[9)7) = exple(at)? - £dfllade,  £=—idty<1. (70)

M_r_m squeezed coherent state with the reduction of fluctuations in one quadrature remain
the MAC@ w:.n: state has a better defined phase than a coherent state if it is ”stretched”
mn the direction of the displacement in the phase space. In our case such situation
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Fig. 10. Statistical properties of the modes for the degenerate two-photon down conversion
with coherent inputs. For the fixed value of the amplitude v =25 we set @ = 3 (short-dashed
lines), o = 3i (long-dashed lines) and a = —3i (solid lines). (a) The time evolution of the
entanglement parameter S¢°", (b) the squeezing s, of the a mode, (c} the squeezing s. of the
¢ mode and (d) the mean photon number #. of the pump ¢ mode. The scaled time is Aot.

happens for ko, — . = —n/2. In the Fig. 10a we plot the degree of the entanglement
between the modes for the initial state (67) with v = 5 and ja] = 3 and for different
phases of the a mode. In general, with the increase of the number of photons in the a
mode (at the given intensity of the pump) the modes become more rapidly entangled.
Nevertheless, change of the phase of the a mode influences significantly the dynamics.
For the phase matching condition 2¢, — ¢ = 7/2 and small intensities of the a mode we
obtain compared with other phase relation the smallest initial rate of the increase of the
entanglement between the modes. In this case the ¢ mode is amplified {(during the first
instants of the time evolution). For other phase relation when 204 ~ . = —u/2 (which
corresponds to the amplification of the a mode) the modes become more correlated
during the first instants of the time evolution. Nevertheless, with the increase of the
intensity of the a mode (which stimulates the transfer of the energy from the ¢ mode
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to the a mode) there appears the effect of the spontaneous disentanglement, i.e. the

azmm_i_m:qm:.ﬁ parameter S5 jg significantly reduced after its first local S«mx:w:::

Zo:wowmr with the increase of the intensity of the a mode the modes can be treated mm.
fully Qmon.ﬁm:m_mP Le. S¢orm ~ ), Comparing the evolution of the parameter S with
the evolution of the mean photon number (Fig. 10d) we can conclude, that for mhnoumamm
la] ~ ¥ the ¢ mode transfers all its energy in a coherent, way into the n, mode. During this
Sm:mmma. there is no entanglement between modes and in the moment when the whole-
energy 1s transferred into the a mode the process of the harmonic generation with the
.oowmﬁ.w:ﬁ @ mode (but now with intensity equal to l|? + 2|v]?) and the man% ¢ mode
M_ MSmmmwmQ:. .m,wa ooEv_mﬁ.m:mmm we should mention that for any phase no_mn_mo: the ¢
%M :M %Mﬂmmwwﬂr:u;m sub-Poissonian statistics, i.e. the Mandel ¢,-parameter (z=a,c)

-1 L my

Is positive for any ¢ > 0 and o < 7- On the other hand, the initial presence of photons
in the a mode leads to an appearance of the sub-Poissonian statistics (ga < 0) in the
case when the phase relation 204 — . = m/2 is fulfilled. The sub-Poissonian character
of the @ mode is restricted to the initial region when photons are transferred from q
“:o.am to the ¢ mode and the minimum value of the Mandel parameter is reached in the

middle” of ﬁr.mm‘ process of the ¢ mode amplification. For the case y = 5 and o = 3;
MMn%:Q the minimum EQVEE = —0.48 at Ayt = 0.04. This sub-Poissonian character

scomies more pronounced with the increase of the input intensity of the a mode. In
Figs. 10b,c we plot minima Se (2 =a,¢) of the squeezing parameters SX SY given by
Eq.(58). For both phase matching condition 200 — p. = +7/2 the mew:hcnﬂ squeezin,
reached by the a mode is reduced in comparison with the case 200 — . = 0 (as well mm
the case o = 0). On the other hand, the maximum squeezing of the pump mode (even
compared with the case o = 0) is enhanced.

From MQ‘QS it follows that the parametric approximation in the non-degenerate
down mo.swo.nmnoc process with the initial state (67) can be performed only if the pump
mode is initially in a highly excited coherent state (|y| > [af). Simultaneously, we have
to ms.o.mm that this approximation is restricted to times such that Aty < 1. On mrm other
hand :q.\/u?\ ~ 1.(i.e. when one of the modes transfers a significant portion of its initial
energy into other modes) then the particular value of the entanglement parameter S¢°T"
depends on the phase of the initial coherent state of the @ mode. From here we mmm a
strong dependence of the entanglement parameter on statistjcal properties of the initial
state of nrm.a mode. Therefore, we will now investigate changes in correlation between
MwMgEommm in the case when the a mode (signal) is prepared in a highly nonclassical

In particular, if we assume the signal mode to be prepared in the Fock state |n)
then the entanglement between the pump and the signal mode becomes stronger th.u
erally, the larger the initial number of photons n in the signal mode the mio:mﬁ. is the
entanglement for given 7 and Ast and consequently the larger is the value of the entan-
glement parameter Seo (see Fig. 11). From here we can conclude that the variation
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in the initial statistics of the signal mode can significantly constrain the applicability

of the parametric approximation.

1.0
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Fig. 11. The short time evolution of the entanglement parameter 5¢°77(t) for the pump mode
initially in the coherent state with n. = 9. The signal mode is prepared initially in the Fock
state |n), with photon number: n = 0 (long-dashed curve), n = 2 (solid curve) and n = 4

(short-dashed curve).

One of the consequences of the above observation is the fact that the state vector
[%(t)) of the pump-signal system, which is initially in the state

[¥(t = 0)) = In)alv)e, (72)
cannot be for ¢ > 0 and n > 1, even approximately expressed as
[¥(1)) = U2() [ (t = 0)) # Sa(—irt)n)al7)e- (73)

We have to note here that approximation {73) can be used for n = 1 but only on a time
scale at which ¢ < (V6Aa}y])~".

We can conclude that the parametric approximation which is represented by the
replacement of the ¢c-mode operators ¢, ¢ by complex numbers can be done only in the
case of coherent inputs in both modes and its applicability is restricted to the region
Asty < 1 for v > . If a nonclassical state (such as squeezed vacuum or number state)
is used as an input in one of the modes then the modes become very rapidly entangled.
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3.3. Multiphoton (k > 2) down-conversion

In the k-photon down-conversion process one photon of the pump mode S;rv;m
.D.mn:mbo% kw is transformed into k photons of the signal mode with the frequency w. If
initially the down-converted mode (signal) is empty then the state vector of the whole
system takes at ¢ > 0 the form ._.

ooh
_Eavn M M gsﬁé_»sr_h|3ve AE
L=0m=0 ;
dm(L;t) = MU cjo{L)cjm(L)e~*Es (L) (75)

i 5

where coefficients ¢jm are given by Eq.(16) [we label the coefficients ¢jm and eigenvalues
E; by L instead of M —= kL]. This multiphoton character of the process under consid-
eration results in the fact that if the signal mode is initially prepared in the vacuum
state, then at ¢ > 0 we find ,

(@)a =(a%), = .= (@* ), =0, (76)

which means that in the k-photon down conversion with k > 2 the signal mode does
not exhibit quadrature squeezing. Nevertheless, it is not excluded that the higher-order
squeezing [5], the amplitude-squared [29] or the amplitude k-the power squeezing [30]
can be observed. : o
. In the k-photon down conversion the signal and the pump mode become mims%&
in the same way as in the two-photon down conversion. Generally speaking, the higlhier -
the order of the process (i.e. the higher the k) the stronger is the entanglement (during
the first instants of the time evolution). This is seen in Fig. 12 for initially empty signal
mode and a coherent pump. For initial states of the signal mode other then the vacuum
state the entanglement is even stronger. Nevertheless, the maximum entanglement
should be expected to decrease with the increase of the order of the nonlinear process
under consideration. This effect is due to a decreasing energy-transfer efficiency in the
k-photon conversion [24]. v

The pump-signal state vector in the k-photon down conversion process for an initial
state Jih(t = 0)) = [0)a]7)c can be written in the factorized form (see below) only during
the first instants of the time evolution when

1 R
VlyA Qd 5

m,ﬂn these times the pump-signal state vector can be factorized as lp(t)) = ES?EQ&«.
where ,

t <

) = 10)a — XetvVEIY k)., |y(2)). = 7)e. (78)

The Q,-function corresponding to the state [14(t)), exhibits k-fold rotational symmetry
and can be written in the form ‘ |

Qa(a) ~elof? (1 - 29t]a}* sin kv + Qmu&_Q_&»v , (9
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Fig- 12. The short time evolution of the entanglement parameter S5°7"(t) for the k-photon
down-conversion with the initial state [0)a[y = 3) with k = 2 (dashed line), & = 3 (solid line),
k = 4 (line with triangles) and k = 5 (line with stars). The scaled time equals VEI\t.

where a = |a|exp(i¥). This Q.-function as well as phase properties of the signal mode
in the process under consideration have been analyzed in details in [31].

In the Introduction we have shown that the application of the parametric application
in the k-photon down conversion (k > 2) is questionable because of the divergence of the
vacuum-to-vacuum matrix element of the evolution operator U/, Mv 1) = exp[—itH (par))
[see Eq.(5)]). In other words, it is questionable to describe the signal mode in the k-
photon down conversion at ¢ > 0 by the state vector

RN = U7V (W)1p(0)a = exp [¢(@h)* ~ &3] [0},
even though that some numerical calculations can be performed by using the Pade’
approximants [for instance, Braunstein’ and McLachlan [5] have shown that for small
values of ¢, the Q,-function of the state (80) is equal to the expression (79)]. Due
to problems associated with the parametric approximation in the Hamiltonian (6) it
Was proposed to use instead of the evolution operator (we use the interaction picture)
QMEJQV = exp [£(a)* — ¢7a*] |0}, the approximation [9, 29]

E=—ilty  (80)

QM:&T_V = mN@T\\ﬂm\mM - ;\\ﬂm*\wwy § = —idily (81)
where the multiphoton operators [29]
4 A= (AT, (82)

which obey the Weyl-Heisenberg commutation relations (i.e. [Ar, Al] = 1) are used.
Within the times ¢ < ¢, differences between the time evolution induced by (6) and 81)
are not significant.
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The long time behavior of the entanglement parameter is similar to the two photon
case (F'ig. 5). Only the maximum value of the entanglement parameter S¢°" is reduceq
with the increase of the order & of the nonlinear process. This fact is due a smaller
exchange of energy between modes for higher k. The origin of this effect was discussed
in the previous section (case k = 2). For k > 2 analogous arguments are valid [see
Eqs.(61), (63) and (64)]. Moreover, for k > 2 the initial state {0}a|N), for even N = 9;
has dominant overlap with only one eigenstate |Ey(2l)) with zero eigenenergy (we can

say that the energy is ”trapped” in this eigenstate). For the odd N = 2 + 1 the
state |0),|N), can be approximated as a superposition of two eigenstates [as in the case *

k = 2 (63)] but the matrix element of the operator 7, between these two eigenvectors
1s smaller and smaller with the increase the nonlinearity-order k& which results in a
drastic suppression of the energy-transfer efficiency in the k-photon down conversion
for £ > 2. For example, for £ = 3 this efficiency (a ratio of the maximum possible
depletion of the pump ¢ mode to its initial intensity) is less than 0.15 for v2 ~ 100 and
for k = 4 is smaller than 0.04 (i.e. the pump can lose only 4% from its initial number
of photons). One of the consequences Is that the Mandel ¢, parameter of the signal a
mode is always higher than that of the pump ¢ mode, i.e. the pump mode is always
more sub-Poissonian than the signal mode (for details see ref. {24]). The revival time of
the mean photon number can be derived along the same lines as in the case k = 2.

Analogously to the two-photon down conversion we can study the influence of the
initial mode statistics on the entanglement and on non-classical properties of the modes.
One can expect, in principle, the similar behaviour as in the case of the two-photon
down conversion. Therefore we will only briefly discuss results for other initial states
such as a squeezed pump or an excited signal mode. .

In the case when the pump is prepared in the squeezed vacuum state and the signal
mode is in the vacuum state the modes become very rapidly entangled during the first
stages of the time evolution. Nevertheless, because the initial state is a superposition
of the states |0),|N). with even N = 9 there is a significantly smaller transfer of
the energy from the pump to the signal mode (compared with the case of a coherent
pump) which determines a reduction of the maximum of correlations (measured by
S2°7") between the modes. Following the arguments given by Hillery and co-workers (6]

the symmetry of the signal Q-function is twice of that of the pump-mode Q.-function. -

Therefore for the squeezed pump we find the signal-mode Q,-function which possesses
(2k)-fold symmetry.

For the other initial state with coherent inputs in both modes, i.e. $(0)) = |@)alV)es -

the situation is analogous to the case k = 2. The relation ky, — ¢, between the phases
of the coherent amplitudes characterizes the initial regime. If the phase condition
kpa — ¢. = 7/2 is fulfilled then the ¢ mode is during initial stage of the time evolution
amplified; the condition kea — . = —m/2 corresponds to the amplification of the a
mode. In the case kp, — ¢, = 0 the ¢ mode is amplified if | > k|y] > 1.

In the summary: the degenerate k-photon down conversion leads (except the case
k = 1) to a strong entanglement between the pump and the down-converted mode.
Disentanglement between the modes is typically limited to very short initial times
& (Aely]) ! providing the pump mode is initially in the coherent state |7}c. The para-
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Fig. 13. The short time evolution of the entanglement parameters of the signal mode S5°'"
(dashed lines) and the pump mode S (solid lines) for the non-degenerate two-photon down-
conversion process. The initial state vector |0)4|0)s|7). was taken with intensities of the co-
herent pump mode as follows: (a) n. = 9 and (b) n. = 25.

metric approximation is limited to this time period. For other initial states (different
from coherent states) the modes become entangled faster, so the parametric approxi-
mation cannot be adopted.

4. Non-degenerate two—photon down conversion

The process of the non-degenerate two-photon down conversion is governed by the
Hamiltonian (4). In this process the pump photon (mode ¢) gives rise to a pair of
highly correlated photons (of the signal and the idler modes). In what follows we will
analyze the entanglement of the field modes in the case when the pump mode is initially
prepared in a coherent state and the signal and the idler mode are in the vacuum state:

[(t = 0)) = [0)a[0)s 7)., (83)

where |7}, describes the coherent state with an amplitude v.

Using the numerical approach [8] we can study the time evolution of the initial
state-vector (83) governed by the Hamiltonian (4). The entanglement parameter Sgorr
of the pump mode describing the degree of entanglement between the pump and the
signal-idler subsystem at the early stages of the time evolution is shown in Fig.13 for
various initial intensities |y|2. From this picture we learn that higher the intensity of
the initial pump mode the larger is the entanglement parameter 5" of the pump,
Le. the stronger is the entanglement between the pump and the signal-idler system.
Through a sequence of local minima and maxima the entanglement parameter reaches an
almost steady state with small oscillations. From the time evolution of the entanglement
barameter it is clearly seen that the pump mode remains in a pure state only at very
early stages of the time evolution. In addition, the larger is the intensity of the initial
Pump mode the shorter is the interval at which Sge ~ 0 [see Eq.(84)).

At the early stages of the time evolution the state vector of the whole system can be
approximated as (working in the interaction picture we drop the free evolution term):

() = Un()10)al0)s}7)e & (10)al0)s — itAy[1)a]1)s)}7). = 1€)aslr)e (84)
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where |€) 45 can be considered as the first order approximation of the two-mode squeezed
vacuum state

1€)ab = Sas[0)a]0), = expeatbt — €abj0)a]0), €= —idaty < 1. a& :

Factorization (84) of the state vector describing the pump mode and the down-converteq
subsystem is possible only for times ¢ for which ’

From Eq.(84) it follows that for ¢ < %, the pump mode remains almost ooEv_mﬁm_um
disentangled from the down-converted modes. In other words during the time interva]
¢ < 1. the statistical properties of the pump are not affected by the interaction with the
signal-idler subsystem. To see this we plot in Fig. 14 the Q function and the photon
number distribution of the pump mode with |y| = 5 for two different time moments, -
In Figs. 14a and 14b we plot Q. and PND at time \,¢ = 0.2. The shape of these -
function is almost identical to that of the imitial coherent state, i.e. the Q- function
has a Gaussian profile and the PND is the Poissonian distribution. As an additional
check of the behaviour of the state of the pump mode during the early stages of time
the evolution we show in Fig. 14e a deviation of the pump mode from the minimum
uncertainty state, i.e. the parameter u. [for definition see Eq.(59)]. We see that for
short times the Parameter u. equals to zero and then it starts to grow rapidly, armnr
means that under the influence of the down-converted modes the pump mode starts to
deviate from MUS. Comparing Figs. 13 and 14e we can conclude that the pump mode \m
starts to deviate from the MUS at the same time when it starts to be strongly entangled
with the signal-idler subsystem. It means that the back action of the down-converted
modes significantly affects statistical properties of the pump mode. In Fig. 14c (14d)
we plot the Q -function (and the PND) of the pump mode at time A = 0.5 (for y = 5
At this time the pump mode is no longer in a pure state but in a statistical mixture, i.¢
the back action of the down-converted modes causes a deterioration of the purity of the’
state. Although being in a mixture, the ¢ mode exhibits some nonclassical properties
We see that the Q. function is “squeezed” in one of the directions and stretched in_
the other. The photon number distribution exhibits oscillations which are typical for
squeezed vacuum states. Moreover, the PND becomes much broader when compared .

- with the Poissonian distribution. From the above we can conclude that the back action
of the down-converted modes leads to squeezing of the pump mode. In Fig. 14f we
plot the time evolution of squeezing parameters defined by Eq.(58) which confirm.the
conclusions based on the analysis of the Q,-function. The maximum degree of squeezing
is obtained at times around M = 0.6 After this moment quadrature fluctuations become
rapidly superfluctuant and do not become squeezed again.

Now we turn our attention to the down-converted modes. The entanglement pa-
rameter S;i™" of the signal-idler subsystem is equal to that of the pump mode S
[in analogy with (25)]. This naturally means that at the very early stages of the time
evolution the signal-idler subsystem is in a pure state. While the pump is still in a pure
state a two-mode squeezed vacuum state (85) is generated in the signal-idler modes

~—
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Fig. 14. Statistical parameters of the pump mode for the nor-degenerate process initially with
fic = 25. (a) The Q. function at Ant = 0.2; (b) the Q. function at \./:u = 0.6; (c) the photon
number distribution at At = 0.2; (d) the photon number distribution at \,t = 0.6; (e) the
time evolution of the one-mode squeezing; (f) the time evolution of the MUS parameter. Time
is scaled as 1/,.

The two-mode squeezing can be described introducing two quadrature operators Z;:

2 d()+di(z 5 d()-dt(t
NHH{M le{_

aw:v — mx—uﬁ‘sﬂv mmxﬁQEaCM&mvaEvc.

(87)

The degree of two-mode squeezing can be quantified using two parameters zi(t) (1 =
L,2):

zi(t) = 4((AZ:)?) — 1, (88)
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3

where ((AZ;)?) = (Z2)~(Z:)? and 100% squeezing is obtained for z;(t) = —1. The time
evolution of z(t) is shown in Fig. 15a. During the first instants of the time evolution 3
high degree of two-mode squeezing is obtained and the energy is transferred from the
pump mode to the signal-idler modes. With the increase of the transferred energy the
degree of squeezing becomes larger. This scenario is valid until the moment when the
back-action of the signal-idler modes on the pump mode becomes significant. Before'
that a pure two-mode squeezed state is generated in the signal-idler modes. This puge
two-mode state (59" ~ 0) is a minimum uncertainty state. One can check this by
inspecting (see Fig. 15b) the time evolution of the parameter uq;(¢) which is defined ag

> - 1
ey = ((AZ1)*)((AZ2)?) - TS (89)
With the initial condition (83) the reduced density operators of the signal and the’
idler modes 4, 5, have the same form, which means that the signal and the idler modes
have identical statistical properties, i.e.:

Sa"" =S5 Pa(n) = Py(n); and Qu(a) = Qy(a). (90)

The time evolution of the entanglement parameter S¢" of the signal mode is shown in
Fig. 13. It can be proved that for the initial conditions given by Eq.(83) an inequality
ST (t) > S5 (4) is valid for any t > 0. Fig. 13 confirms that for the given intensity
of the initial pump mode the purity parameter S increases during the initial period
of the time evolution much more rapidly than the parameter e =857 From here
it follows that at initial stages of the time evolution the index of correlation I takes
its maximal values (le. ISoT ~ 25,), which is an additional proof that the two-mode
squeezed vacuum [11] is produced in the signal-idler modes. As soon as the pump mode’
is affected by the action of the down-converted modes the entanglement parameter.
et = ST becomes larger than zero, which consequently results in the deterioration
of the degree of correlation between the signal and the idler. %
In Fig. 15¢ (15d) we plot the Q-function (the PND) of the signal mode at the
moment At = 0.2 (we assume 7 = 5). We clearly see the thermal-like character of the
marginal photon number distribution and of the Qa-function which is the characteristic
feature of the two-mode squeezed vacuum state. At later moments, when the pump
and the down-converted modes becomes entangled (Sg" > 0), the field statistics of
the signal mode is significantly different from the thermal-like field. In particular, the.
photon number distribution becomes very broad (compare Figs. 15d and 15f). At times-
much longer than t. given by Eq.(86) the three modes under consideration become-
strongly entangled. They are not in pure states anymore, but the quantum nature of
the dynamics leads to some new interesting features, .
On the long time scale the time evolution of the entanglement parameters St and
Sg™" is similar, i.e. both parameters exhibit small oscillation around some stationary.
value and a very significant decrease and significant oscillations at some particular
moments. We can call this behaviour as the collapse and revival of the purity of the:
field modes. We should note here that the minima of the parameters S5 and S¢T
appear simultaneously and moments when they appear coincide with the “revivals” of
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Fig. 15. Statistical parameters of the down-converted modes for the same m?:wio.zm as in
Figs. 14a-d; (e) the time evolution of the two-mode squeezing E:ﬂ:mom_..m. z1 mermm line) and
22 (solid line}; (f) the time evolution of the two-mode MUS parameter. Time is scaled as 1/),.

the mean photon number of the signal (idler) mode [9]. At this moments we can observe
a partial restoration of the initial purity of the modes ~.:im~ consideration. One can
estimate the “revival” time of the mean photon number in exactly the same way as we
have described in the previous section. .

If we compare the above results for the non-degenerate .Qoi: conversion and Ew
degenerate two-photon down conversion we see that dynamics of the pump BO@m.E
both processes is very similar. On the other hand, as one can expect, quantum mgsmro.m
of down converted modes in these two processes (degenerate and non-degenerate) is
different,. .

Analogously as in the case of the degenerate process we can study the _:m:m:o.m
of the change of initial conditions on output properties of the modes. If the pump is
Prepared in a squeezed vacuum state instead of a coherent state then results concerning
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the entanglement parameter Ssgorr

as well as properties of the pum
to those for the degenerate two- btain ety ey EoLe

photon down conversion To obtain results which h

; . ave
no analogy in the &mmm:mnmam case we turn our attention to the case when either the !
signal mode or the idler is initially excited. ok
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We explore the model (4)

for the input state when th
down-converted modes are a; ’ pomet i

ssumed to be initially in a coherent state [32]

[¥(t = 0)) = [a)al0)y ). (91)

M,Ow this kind of the Input no longer the entanglement parameters $°°rr and S5 of the
H %Sb-ooawmg& modes are the same, i.e. in general Seorr 4 %Maiamon t>0 ~.: means
at the signal and the idler are entangled with the rest of the system (i.e. with the
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statistics. On the other hand, nonclassical properties of the signal @ mode are enhanced
and it exhibits both a high degree of squeezing as well as a sub-Poissonian character.
Moreover, this highly nonclassical behaviour appears at the time of the ”spontaneous”
disentanglement of the signal @ mode from the two other modes, i.e. S — 0. From
here we can conclude that a pure nonclassical state in the signal a mode is produced.
The pump ¢ mode and the idler exhibit some degree of squeezing even though they both
are in mixture states. The effect of the spontaneous disentanglement appears in the a
mode only when its initial intensity is precisely chosen, namely if & & v (as was pointed
out elsewhere [32], further increase of the input signal intensity leads to a deterioration
of nonclassical effects in all modes) and is restricted to the short time scale. From
Fig. 16d it is seen that the disentanglement appears during those moments when the
initially amplified signal and idler modes partly return their gained energy back to the
pump (¢ mode). The time at which the disentanglement appears in the non-degenerate
down-conversion with the input (91) characterized by « = 7 is proportional to (A,y)~!.

Finally, we want to compare the case when an input coherent signal was considered
with the case when the signal is prepared in a number state |D)a, te.

[%(t = 0)) = |D)al0)s}7).. (92)

This input was studied in details in [9]). For number states with D < |12 the dynamics
behaves in a rather obvious way, i.e the pump mode becomes faster (and more strongly)
entangled to the down-converted modes compared with the case of the mnitially empty
signal (D = 0). Nevertheless, quite unexpected behaviour can be found in the regime
D » |7|* when the entanglement of the pump to the other modes becomes weaker
and the pump can be treated as decoupled from the down-converted modes at the time
region proportional to v/D/X,. The origin of this effect can be found from the analysis
of the matrix element (14) of the interaction Hamiltonian (4). On the subspace Hp 1.
the matrix element

hm

I

AL =m—1] y(m +1| o(D +m+ 1|Hp|D + m),|m);|L — m).
AV (D +m+ 1) (m + 1)(L = m) (93)

can be in a good approximation (for D >> L) rewritten as

hm = (AVD)/(m+ 1) (L—m) (D> L). (94)

The same matrix elements possesses the linear coupler with the coupling constant A; =
AVD. Effectively the pump mode interaction with the system composed of the signal
and idler modes is linear as the state |D + m)a|m)y represents the state |m)); of the
"mode” G to which the pump ¢ mode is coupled via interaction Hamiltonian (28) with
A1 = A,v/D. Therefore the initial coherent pump is disentangled from the @ ”mode”
for times At € /D remaining in a coherent state with the amplitude y(t) = vy cos At
[see (31),(32)]. Later the "basic” nonlinear interaction causes a loss of the purity of
the pump mode. Almost full restoration of the initial pure pump state (and inevitably
also signal and idler states) appears at the revival time of the mean photon number

R =47/D/A,.
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. Zoi.é.o .5: shortly discuss the efficiency of the energy transfer from the pump m
Sno. an initially empty mode {idler). The presence of initial signal photons incre -
m%o_m:w% of the energy transfer from the pump mode. For an initially empty mmmmwm
.Bom.m [i.e. for the input (83)] less than 80% of the pump photons can be Qm:mmmmﬁ
into idler mode while with the initial states (91) and (92) the efficiency tends to So@wwﬂ
a, b — 00. .wmm:m,_ photons stimulate an energy transfer from the pump mode and QM Mu
the interaction more “linear” [see linearization (94)]. The origin of the limited Qnmnmom ;
of the non-degenerate down conversion (with empty signal and idler) is m:m_omo:mzmw

that in the degenerate two-photon down conversion. i

Conclusions

. We have analyzed quantum-statistical properties (such as squeezing and sub
character) of the field modes in the process of degenerate k-photon down conversion &

nmnmaom:n approximation (i.e. a classical description of the intensive pump) cannét
.vm mvw:mm for arbitrary initial state of the system. Typically, a coherent pump with
intensity n, can be treated classically at times t « ;ﬁ:vz\hﬂvL. In contrary, the
pump Emwmm.ma I a squeezed vacuum state has to be treated @:m,:n:E-BmQrm:m_omz,
even in this time region. Moreover, the degree of the entanglement between the Eomaw
depends also on initjal statistics of the down converted mode(s).

Although we have investigated some particular nonlinear optical processes one can
expect that our conclusions concerning the applicability of the parametric approxi-
mation are valid also for other nonlinear processes, such as the degenerate and non-
Qomm:mam;m. hyper-Raman scattering. Even a two-mode coupler with intensity depen:
dent noEu_Em leads to this kind of the results [33]. This work was devoted to quantum-
correlations between field modes, but the mutual entanglement of subsystems can be

m;oBm.QF fact, 3:.::58 of the wo:-&mmmsagnm down conversion process can be directly
Sm.m_um on the Dicke model without dissipations [34] (so called the Tavis-Cumming
model) due to the same algebraic structure {the b and ¢ modes form the bosonic rep-

resentation of the atomic subsystem composed of two-level atoms which interact with
the a mode).

Acknowledgements

This work was supported by the Grant Agency of the Slovak Academy of Sciences Grant

Zo.@>m>< w\wwwzw\ww.O:mOm:m~u d lik ‘..
hospitality in Helsinki. (1) would like to thank Prof. §. Stenholm b

References

{1] M.o“.ww_.nmrmmrr Adv. Commun. Syst. 1, 227 (1965); H. P. Yuen, Phys. Rev. A 13, &mw&
Mw”% vu R. Loudon,, Hu.. L. Knight, J. Mod. Optics 34, 709 (1987); K. Zaheer, M. S. Zubairy,
90, in: Advances in Molecular and Optical Physics, vol. 28, edited by D.Bates and
B.Bederson (Academic Press, New York), p.143 ,

Mode entanglement. .. 193

E W. H. Louisell, A. Yariv, A. E. Siegman, Phys. Rev. 124, 1646 (1961); for a review of optical

vwnwgman amplifiers see R.G.Smith, in: Laser Handbook, vol. 1, edited by F.T.Arecchi
and E.O.Schulz-Dubois (North-Holland, Amsterdam, 1972). Pefina, J., 1991 Quantum
Statistics of Linear and Nonlinear Phenomena, 2nd edition (Kluwer Academic, Dordrecht).

3] L.-A. Wu, H. J. Kimble, J. L. Hall, H. Wu, Phys. Rev. Lett. 57, 2520 (1986); see also C.

Fabre, G. Gammy, Phys. Rev. Lett. 59, 2555 (1987); R. Slusher, P. Grangier, A. LaPorta,
B. Yurke, M. Potasek, Phys. Rev. Lett. 59, 2566 (1987); S. Pereira, M. Xiao, H. J. Kimble,
J. Hall, Phys. Rev. A 38, 4931 (1988); P. R. Tapster, J. G. Rarity, I. S. Satchell, Phys.
Rev. A 37,2963 (1988); T. Debuischer, S. Reynaud, A. Heidmann, E. Giacobino, C. Fabre,
Quantum Opt. 1, 3 (1989).

[4] D. F. Walls, C. T. Tindle, J. Phys. A, 8, 534 (1972); Lett. Nuovo Cim. 2, 915 (1971); D.
F. Walls,, R. Barakat, Phys. Rev. A 1, 446 (1970).

[5] R. A. Fisher, M. M. Nieto, V. D. Sandberg, Phys. Rev. D 29, 1107 (1984); S. L. Braunstein,
R. L. McLachlan, Phys. Rev. A 35, 1659 (1987). M. Hillery, Phys. Rev. A 42, 498 (1990).

[6] M. Hillery, D. Yu, J. Bergou, Phys. Rev. A 49, 1288 (1994).

[7] S. Carusotto, Phys. Rev. A 40, 1848 (1989); B. Jurco, J. Math. Phys., 30, 1739 (1989).

(8] G. Drobny, 1. Jex, Phys. Rev. A 45, 1816 (1992); G. Drobny, I. Jex, Phys. Rev. A 46, 499
(1992).

[9] V. Buzek, G. Drobny, Phys. Rev. A 47, 1237 (1993); G. Drobny, I. Jex, V. Buzek, V.,
Phys. Rev. A 48, 569 (1993).

(10] J. von Neumann, Gott. Nachr., 273 (1927); M. Araki, E. Lieb, Commun. Math. Phys. 18,
160 (1970); A. Wehil, Rev. Mod. Phys. 50, 221 (1978).

(11] S. M. Barnett, S. I. D. Phoenix, Phys. Rev. A 40, 2404 (1989);

[12] W. K. Lai, V. Buzek, P. L. Knight, Phys. Rev. A 43, 6323 (1991), and references therein;
H. Fearn, R. Loudon, Opt. Commun. 64, 485 (1987); J. Opt. Soc. Am. B 6, 917 (1989).

{13] Wodkiewicz, K.,, Eberly, J. H., J. Opt. Soc. Am. B 6, 2447 (1985).

[14] R. J. Glauber, Phys. Rev. Lett. 10, 84 {1963); E. C. G. Sudarshan, Phys. Rev. Lett. 10,
277 (1963); R. J. Glauber, Phys. Rev. 131, 202 (1963).

[15] B. L. Schumaker, Phys. Rep. 135, 317 (1985); J. N. Holenhorst, Phys. Rev. D 23, 1669
(1979); C. M. Caves, Phys. Rev. D 23, 1693 (1979).

(16] M. S. Abdalla, J. Mod. Opt. 39, 1067 {1992).

(17] J. Janszky, An. V. Vinogradov, Phys. Rev. Lett. 64, 2771 (1990); V. Buzek, P. L. Knight,
Opt. Commun. 81, 331 (1991).

(18] C. w. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, Berlin, 1983);
J.Janszky, P.Domokos, P.Adam, Phys. Rev. A 48, (1993).

19 F. A. M. deOliveira, M. S. Kim, P. L. Knight, V. Buiek, Phys. Rev. A 41, 2645 (1990);
P. Krdl, J. Mod. Opt. 37, 889 (1990).

20] V. Buzek, M. Hillery, unpublished.

] K. E. Cahill, R. J. Glauber, Phys. Rev. 177, 1857 (1969); ibid. 177, 1882 (1969).

] C. K. Hong, L. Mandel, Phys. Rev. Lett. 54, 323 (1985).

(23] 1. Jex, J. Mod. Optics 40, 1753 (1993).

(24] G. Drobny, V. Buzek, unpublished.

[25] M. Hillery, M. S. Zubairy, Phys. Rev. A 29, 1275 (1984); D. D. Crouch, S. L. Braunstein,
Phys. Rev. A 38, 4696 (1988).




94 G Urobny et ajf- Mode entanglement. ..

[26] E. T. Jaynes, F. w. Cummings, IEEE 51, 89 (1963); B. Shore, P. L. Knight, J. Mod.
Opt. 40 (1993) and references therein.

[27] L. Jex, V. Buzek, J. Mod. Opt. 40, 771 (1993).

[28] L. Mandel Opt. Lett. 4 205 (1979).

[29] G. D’Ariano, M. Rasetti, M. Vadacchio, Phys. Rev. D 32, 1034 (1985); J. Katriel, A.
Solomon, G. D’Ariano, M. Rasetti, Phys. Rev. D 34, 332 (1986).

[30] C. K. Hong, L. Mandel, Phys. Rev. A 32, 974 (1985).

[31] R. Tanas, Ts. Gantsog, Phys. Rev. A 45, 5031 (1992); Ts. Gantsog, R. Tanas, R. Zawodny,
Opt. Commun, 82, 345 (1991); I Jex, G. Drobny, M. Matsuoka, Opt. Commun. 94, 619
(1992).

[32] G. Drobny, I. Jex, unpublished.

[33] L Jex, G. Drobny, Phys. Rev. A 47, 3251 (1993) 3251.

[34] R. Dicke, Phys. Rev. A 93, 99 (1954); M. Gross, . Haroche, Phys. Rep. 93, 301 (1982)
and references therein; G. Drobny, I. Jex, Opt. Commun, 102, 141 (1993); G. Drobny, Ts,
Gantsog, I. Jex, Phys. Rev. A 48, 622 (1994).




