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In the present contribution our approaching the quark-gluon plasma phase tran-
sition is analysed by means of the sufficiently extended fundamental equation
describing self-similar processes. The presence of that kind of processes is usu-
ally inferred from non-vanishing scaling indices characterizing intermittency (&
la Bialas and Peschanski) or the G-moments (& la Hwa and Pan). We give a
relation between those two sets of scaling indices thereby arguing that (under
certain assumptions) the information involved in one set is contained also in
the other one. Several suggestions to experimental groups are formulated, too.
Special attention is paid to the antiproton-proton collisions at /s = 1.8 TeV
and (16)oxygen colliding with emulsion nuclei at 60, 200 (and higher) A GeV.

1. Introduction

High energy collisions lead to production of many secondaries. It is expected that
nearness to the phase transition (say, into quark-gluon plasma) will be reflected also
into multiplicity distributions. On the other hand, there are several cases where the
multiparticle production reveals multifractality {1]. And multifractal structure can
be interpreted in terms of the self-similar processes. Therefore a natural question
arises, namely, whether -or to what extent- the multifractality itself or the underlying
self-similar processes can be considered as a signature for identifying the presence of
(or the ”distance” from) the phase transition.

In the next Section global properties of self-similar processes are mentioned; we
discuss there also an extended version of the fundamental equation which incorporates
them in a natural way. In the third Section this equation is applied to the data on
antiproton-proton collisions at /s = 1.8 TeV as well as on the 160 + Ag/Br collisions
at 60 and 200 A GeV. We show there that with further assumptions (expressing mostly
the simplest possibilities) the present approach is able to specify the location of the
phase transition (or to guess at least the lower limit, in the energy scale) where it can
be expected.

1Presented at School and Workshop on Heavy lon Collisions, Bratislava, 13-18 September 1993
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Figure 1. A concrete spectral function which clearly exhibits the fact that the corresponding
density of singularities vanishes at a finite value of the order q. The points are taken from
[10] and they characterize a growth-site probability distribution.

In high energy physics presence of self-similar processes is usually ascribed to the

appearance of non-vanishing scaling indices which characterize on one hand the in-

termittency [2] and on the other one the multifractality specified by the G-moments,
[3]. Relations between those two sets of scaling indices are formulated in the fourth
Section; they involve also the corresponding intercepts as well as an effective aver-
age multiplicity, Ny . All those quantities are accessible by the experimental groups
without additional complications and we propose to publish them together with the
scaling indices as more complet characteristics of multifractal phenomena. In the last
Section we shortly conclude that the knowledge of all those quantities will eventually
allow us to verify (i) the presence of global properties specifying the self-similar pro-
cesses, (ii) the mutual dependence of both sets of scaling indices mentioned above,
and (iii) to estimate, in a more accurate way, the distance from the phase transition.

2. Global properties of self-similar processes

2.1 Preliminaries

Let us concentrate on the probability flow through a (pseudo)rapidity window
AY (of the size = 1). We assume that in the first step the window AY is partitioned
into C; portions of lenght I; and with the corresponding probability flow (or, more
correctly, frequency numbers) p; where j =1, 2, ... | K. Moreover, we admit that
there is a portion of the length Al where no probabilty flows at all. Then the following
two normalization constraints should be satisfied, '

K
> Cili + Al=1, (2.1)

i=1

K
> Cims= L. (2:2)
=1

Ir
Al# 0 (2.3)
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Figure 2. Schematic partitioning of the ”(pseudo)rapidity” variable.
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Figure 3. Schematic partitioning of the ”probability” variable.

we say that the empty bin effect is present there; in general,

0<Al<L (2.4)

If at, least one of the coefficients C; is larger than unity we say that the multiple bin

phenomenon is present there (compare [4]). . .
The presence of self-similarity induces validity of the following fundamental equa-

tion {5}, [6],
W@.&E =1 (2.5)
j=1

The quantity 7 = 7(q) represents scaling indices which characterize multifractality in

terms of the G-moments, {3],

Gy = W (5) et —q. (2.6)
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Figure 4. Scaling function, r = 7(g,%) characterizing the antiproton-proton collisions at
/3= 1.8 TeV, for four values of the mixing angle .

namely,
(G} o< ggM ™79, 2.7)

In (2.6), n; expresses the number of particles observed in the i-th bin, M gives the
number of bins, N = 3", n; being the total number of particles observed in one event
under consideration and ©(z) is the step function which is equal to 1 if z > 0 and
zero if x < 0. The angular brackets in (2.7) (and in the following part of the present
contribution) express averaging over events and g, are the intercepts corresponding
to the scaling indices 7(q).

The intermittency is usually introduced by means of the requirement that the
factorial moments F,

M
Fy= M1 Y [By(ni)]/ N (2.8)

with
Ejny=nn-1)..(n-q+1)=F (2.9)

reveal the power-law dependence (compare [2]),

(Fy) ox fyM*®s (2.10)

in some range of the numbers M; f, denote the intercepts corresponding to the scaling
indices a,. As far as the multiplicities involved are sufficiently large, rel. (2.7) and
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Figure 6. Density of singularities, f = f(g,v). The points A and B mark the location where
the density f(g,v = —1) vanishes; otherwise the same as in Fig.4

(2.10) give -
gy =q-—1-14 {2.11)

Modification of rel.(2.11) due to the presence of finite multiplicities is considered in
the fourth Section of the present contribution.

" Besides scaling indices also the strength & = a(g) = d7/dg and the density f
f(g) = ga — 7 of the underlying singularities as well as the spectral funetion f =
! {a) characterize a fractal structure. It is worthwhile to note that the fundamental
equation (2.5) induces convex property of the scaling function 7 = 7(q) and of the
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spectral .?:o:o: .\.H e}, ie. d%r/d¢? < 0, d*f/da? < 0 (compare [5]). Moreover
the density f=f(q) is a non-vanishing function for any finite order q of the mgsmsomm
moment under consideration (compare [4]).

. Scaling function 7 = 7(q) enters also the definition of generalized (Renyi) dimen-
sions D=D(q) .

k]

D(q) = m(g)/(g ~ 1)- (2.12)

Let us add that the case when D is independent (at least to a required degree of

accuracy) of the order q can be considered as a signature for the presence of the
(thermal) phase transition [1], [7], [8].
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Figure 7. Spectral T:.ESOF f = f(a,v). There are clearly seen the points where the density
f = f(q,7 = —1) vanishes; otherwise the same as in Fig 4.

2.2 Extended fundamental equation

There are serious indications (some of them are quoted e.g.in [6], [9]) that in some
cases the scaling function as well as the spectral function are concave functions of
their argument and the density f=f(q) vanishes at some finite value(s) of the order
q. Let us demonstrate at least the last fact in Fig. 1 where the results [10] of a
growth-site probability distribution are seen (theoreticians should not disregard such
facts as far as they should follow a scientific attitude..; compare [11]}.
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Figure 9. Linear approximation of the energy dependence of mixing angle v = v(E) and of
the scaling index 70 = m0{g = 0,7 = 7(E)) allowing to deduce the location (or at least the
lower bound) where the (thermal) phase transition can be expected. Experimental values at
E = 60 and 200 A GeV on '*O + Ag/Br collisions are taken from [14].

Let us express the extended fundamental equation incorporating the aforemen-
tioned cases, in the following form,

x & -
MUQ%WE =1 (2.13)
j=1

where
Gd—§" = (g—gy)cosy + (7 —7g)siny,
F_ 7" = —(qg—q)siny+ (T — 77 )cosy (2.14)

with v being mixing angle. The quantities with asterisk represent corresponding
translations; their value is determined by the requirement that, on one hand eq.(2.13)
with 4 = 0 should reduce to eq.(2.5) and, on the other hand, with y = 7 to

K
¢ 3T—Tao -1 !
St =0 (2.15)

=
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Figure 10. Spectral function, f = f(«,v) characterizing *0 + Ag/Br collisions.
Then §* = g7 = L and #* = 77 = 370 where
o =71(g=10,7). (2.16)
In this case the transformation (2.14) can be expressed in the form
§=gcosy+rsiny+pu,
T=—gsiny+T1cosy+v (2.17)
and
1 .
p= MC —cosy) — 7, sinv,
(2.18)

1
V= —

wﬂc: — cosvy) + ¢; siny.
Let us recall that eq.(2.5) describes self-similar processes characterizing fractal struc-
ture of probability flow through the bin sizes arising by successive partitioning of, say,
the (pseudo)rapidity, compare Fig.2. On the other hand, €q.{2.15) allows a comple-
mentary interpretation, namely: it describes self-simiar processes characterizing the
fractal structure in {pseudo)rapidity when the successive partitioning is performed in
the probability variable, 6], [9], compare Fig.3. We suggest to verify this complemen-

tary approach and consequences which follow from its application; two attempts to
3 it are presented in the following Section.
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Figure 11. Scaling function 7 = 7(q, 7) characterizing ‘O + Ag/Br collisions; mr.m value ¥
-0.1 (i.e. E about 660 GeV) corresponds to the (possible) thermal phase transition.

In the extended case also the following generalized dimension can be considered
as a convenient characterization of the underlying fractal structure,

D =D, =¢/(r—T) (2.19)
7o being given by (2.16).
3. Applications of the extended fundamental equation (2.13)
In what follows two cases are considered, namely, when in (2.18),
=1, 7, =0 (3.1)
and
4; = W T, = Wa (3.2)

In the next analyses the extended fundamental equation (2.13) is oo:waonmm.é;r two
kinds of bin sizes (i.e. K = 2) and it is solved together avith both constraints (2.1

and (2.2).
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3.1 Antiproton-proton collisions at /s = 1.8 TeV

It turns out that in this case the possibility (3.1) represents a more instructive ap-
proach. Especially, Table 1 shows the (preliminary) experimental values of the scaling
indices 7(g), [12], as well as theoretical output which arrives by solving eq.(2.5) (i.e.
eq.(2.13) with v = 0). As it is seen, the agreement between those two kinds of data is
quite sufficient. The value of 7y = 7(¢ = 0,y = 0) = —0.8513 is taken from the experi-
mental source {12]. Due to the fact that 7 # —1 the empty bin effect is present there,
however, the multiple bin phenomenon is nearly absent there (since C; = Cy = 1).

‘O« Ag/Br _ E{AGeV]: 60 -~
Dlq) 200 ---
450 -~
= 12 660 —
’.’hJ |
//.//.

1
-8 ~4 0 4 8 q

Figure 12. Generalized dimension, L) = D(g,%), rel.(2.12) characterizing *Q + Ag/Br
collisions; D = D(g,y = —0.1) corresponds to the (possible) thermal phase transition.

The remaining three parameters are fixed at the following value,

p1 = 0.526, (3.3)

and
1, =0.3291, Al = 0.1088. Aw.&

Theoretical curve 7 = 7(g,7 = 0) is seen in Figure 4. The same Figure presents also
three other solutions of eq.(2.13), 7 = 7(q,7), namely for y = —1, 1, 180 , respectively.
In all three cases the same value of p; is taken as in rel.(3.3) (thereby simulating the
antiproton- proton case). However, the value of 7y = 7(¢ = 0,7) for corresponding
three cases as well as the value of I; and Al are tuned up so that the constraints (2.1),
(2.2) and 7(¢ = 1) = 0 be satisfied to the required degree of accuracy. Numerical
value of those parameters is presented in Table 2. Let us note that for instance the
natural requirement for the size of the empty bins, Al , expressed by rel.(2.4), prevents
sometimes the mixing angle v from taking on some real values.
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The strenght o = a(q,7), density f = f(q,7), spectral function f = f(«,v) and
mm:mnm:Nma dimensions D = D(gq,v) (with v = —1,0,1,180 ) are seen in Figures 5, 6,
7 and 8, respectively. Especially the last Figure suggests that D(q,y = +1) is nearly
independent of q thereby indicating possible presence of (thermal) phase transition
(some more details are included into the next part of this Section). Let us add that
Figure 6 clearly exhibits the possible vanishing of the density f = f(q) and thereby
indicating, in this approach, the possible appearance of the so called non-thermal
phase transition, [13] (and also Fig.1).

Table 1. Experimental, (7q)ezper, and theorctical, (7¢)theor, values of the scaling indices
r = 7(g) obtained in the antiproton- proton collisions at \/s= 1.8 TeV. The experimental
values are taken from [12]; the theoretical values are obtained by solving eq.(2.13) of the
present paper (where K = 2, v = 0 and applying (3.1); other parameters are specified by
y = 0in Table 2).

pp collisions at /5=1.8 TeV
qa ﬁﬁ&vaﬂﬂmﬂ Aﬂnvnrmo-.
-5 -6.508 + 0.039 -6.511
-4 -5.273 £ 0.031 -5.251
-3 -4.054 % 0.022 -4.029
-2 -2.878 + 0.014 -2.871
-0.5 -1.311 + 0.002 -1.312
0 -0.8513 £ 0.003 -0.852
0.5 -0.415 + 0.001 -0.414
2 0,766 £ 0.003 0.768
3 1.470 & 0.007 1.476
4 2.138 £+ 0.010 2.141
5 2.784 4 0.014 2.776

Table 2. Value of parameters entering eq.(2.13) for four values of the mixing angle y. The
value of 75 at v = 0 is taken from experimental data, [12]. In all four cases value of the

parameter p; is fixed at 0.526.

pp collisions at /s = 1.8 TeV

v -1 0 +1 180

70 | -0.750 | -0.8513 -1 -0.8513
& | 0.560 0.3291 | 0.5200 { 0.3291
A | 0.168 0.1088 | 0.0243 | 0.1088
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Table 3.Value of the scaling indices characterizing fractal structure which arises in the
(16)oxygen-emulsion nuclei callisions at 60 A GeV. The experimental data are taken from
[14] and the theoretical values come by solving eq.(2.13} with (3.2).

160 4 Ag/Br at 60 A GeV
2

q Tdvnp.vnq T‘nvn?moﬂ _HT. vnNDMMwunM”Kvs;«osw
-6 | -6.953 + 0.353 | -6.942 971 x 10~ *

-5 | -5.8874 0.281 -5.879 8.11 x 10™*

-4 | -4.8214 0.211 -4.820 2.25 x 107

-3 | -3.764+ 0.144 -3.772 3.09 x 1072

-2 | -2.734+ 0.085 | -2.746 1.92 x 1072

-1 | -1.7524 0.041 | -1.759 2.91 x 10™2

0 | -0.83640.015 -0.836 0

2 0.7551+0.012 0.757 2.78 x 1072

3 | 1.446+ 0.024 1.445 1.74 x 1073

4 | 2.0963% 0.036 2.039 6.94 x 1073

5 | 2.7214 0.048 2.719 1.74 x 1073

6 | 3.330+ 0.060 3.334 4.44 x 1073

piTIL
%O« Ag/Br . P

L
-8 -4 0 4 8 q

Figure 13. Generalized dimension, = D{q,7), rel.(2.19), characterizing %0 + Ag/Br
collisions; notation is the same as in Fig.12.

3.2 Oxygen-emulsion nuclei collisions

Experimental data [14] on multifractal structure observed in oxygen-emulsion nu- .

clei collisions at 60 and 200 A GeV represent, so far, a unique way to draw special
conclusions about the possible phase transition into quark-gluon plasma. The reason
for this standpoint arrives from the fact that those two sets of data obtained at differ-
ent energies are quite rich and they are elaborated, essentially, by the same technics.
In our approach it is mainly the energy dependence of the mixing angle v which we
are looking for.
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Table 4. The same as Table 3, but now at 200 A GeV.

180 4+ Ag/Br at 200 A GeV
2

q Aﬂovohﬁoﬂ Aﬂcvn?ooﬂ Tﬂ vnmnDM“vl...M“nvM:nnﬂw
6 | -71.678+ 0.236 | -7.704 1.21 x 1072

-5 | -6.470+ 0.187 | -6.467 2.57 x 1074

-4 | -5.265+ 0.141 -5.248 1.45 x 1072

-3 | -4.0744 0.097 | -4.058 2.72 x 1072

2] -2.9224 0.059 | -2.917 7.18 x 1073

-1 { -1.848+ 0.030 | -1.849 1.11 x 1073

0 | -0.874+ 0.012 | -0.874 0

2 | 0.790+ 0.010 0.791 1.00 x 1072

3 | 1.518+ 0.020 1.517 2.50 x 1073

4 | 2.205+ 0.030 2.203 4.44 x 1072

5 | 2.867+ 0.041 2.864 5.35 x 1073

6 | 3.513% 0.051 3.512 3.84 x 107*

Let us start with eq.(2.13). Applying the second possibility (3.2) we express
rel.(2.18) in the form,

1 .
n= Wﬁ|nomi — 5Tosiny,

1 1.
v= m.ﬁoﬁ —cos) + 5 sin7- (3.5)

Now, it is convenient to reformulate eq.(2.17) with (3.5) in terms of the asymptotics
rp=r(g»1)=qay—fp and - =7{gL-1) =go_— f- (3.6)

(more details in [9]). Experimental value of the scaling indices 7(g) shown in Tables
3 and 4 allow to deduce the numerical guess of the asymptotics as it is seen in Table
5 (the value of 7o is taken from experimental data). This asymptotics considered
as input in the reformulated eq.(2.17) with (3.5) leads to the output as it is seen in
Table 6 (without any free parameter). Then eq.(2.13) gives the theoretical values of
the scaling indices as they are presented in Tables 3 and 4 {compare [15]). The nice
agreement between experimental and theoretical values of the scaling indices {as it is
indicated by last columns in Tables 3 and 4) stimulates our attempt to extrapolate,
even if very tentatively, the energy dependence of the mixing angle v = 7(E) and the
value 19 = 7o{F) where 1 = 7(¢ = Pq.v with ‘\ = v at the energy E = 60 and 200
A GeV. Assuming a linear (i.e. the most simple) dependence we arrive to the result
(compare Fig. 9) that at the energy £ ~ 660 A GeV, with good approximation
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r(q) =g -1 (3.7

(and 7(0) = —1); this means,

D(q) =1, (3.8)

independently of the order q. Then Al = 0.001 and v = —0.1. As far as (3.7)
is satisfied, we obtain o{q) = 1 and f(a) = ga — (¢ — 1) = 1 (for all q’s): the
spectral function is shrinked into one point. Moreover at E =2 450 A GeV our analysis
gives v &~ 0 and 7(¢ = 0,7 = 0) = —0.969. The spectral function f = f(e) for
corresponding four energies is seen in Fig. 10. The scaling indices 7 = 7(g,7) and
the generalized dimensions D = D(q,7) rel.{(2.12), and D = D(r(q),7) rel.(2.19) for
v = v(F), E = 60, 200, 450 and 660 A GeV are seen in Figures 11, 12 and 13,
respectively. Table 7 gives the numerical value of the scaling indices 7 = 7(g, 7(E))
for E = 450 which can be considered as our prediction.

We conclude that as far as the assumptions involved in the present contribution
are acceptable, the phase transition in "0 + Ag/Br collisions should not appear at
the energies which are lower than about 660 A GeV.

Table 5. Value of the input data involved in solution of the extended fundamental equation
(2.17) with (3.5) reformulated in terms of the asymptotics 7 and 7_, rel.(3.6), completed
by the condition that all bins are of the same size (i.e. I} = b).

0 + Ag/Br
at 60 A GeV | at 200 A GeV
a4 0.605 0.632
i 0.287 0.266
a_ 1.068 1.256
f 0.530 0.145

4. Relations between two sets of scaling indices

In high energy physics the multifractal structure is usually characterized in terms
of the scaling indices 7 = 7(¢) and-a = a(q) introduced by (2,7) and (2.10), respec-
tively. We shall show that those two kinds of scaling indices are related as far as they
are deduced from the same set of events (and other, kinematical, characteristics being
also the same). This fact allows to conclude that, in principle, it is sufficient to deal
only with one set of those scaling indices. We sketch briefly a procedure which allows
to establish the corresponding relations.
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Table 6 Value of the output data specifying the parameters which enter the extended fun-
2l .

%56:5_ equation (2. 13).

160 + Ag/Br
at 60 A GeV | at 200 A GeV
5 1817 x 107 | 1.172 x 1077
Al 2434 x 107 | 1.246 x 107!
L=0 | 1876x107" | 3528 x 107}
Cy 1.613 x 10° 1.318 x 10°
C, 2.420 x 10° 1.163 x 10°
P 3.660 x 107 | 5.190 x 107!
P2 1.693 x 1071 | 2.717 x 107!

Table 7. Predicted value of the scaling indices © = 7(g) characterizing multifractality in
16 4 Ag/Br collisions at 450 GeV.

160y + Ag/Br at 450 A GeV
q Aﬂ@va?men

-6 -7.681

-5 -6.482

-4 -5.306

-3 -4.160

-2 -3.051

-1 -1.987

0 -0.969
2 0.925
3 - 1.810
4

5

6

2.664
3.494
4.306

First of all let us express the function E = Ey(n), nm:w.wf in the form E =
P(n+1)]/T(n—1t) and n+1=n(1+ 1/n),n—t=n(l —t/n) with

t=q—1. AA.:
Applying the Stirling’ asymptotics for T' -functions and multiplying all corresponding

series expansions we obtain

nk

E=n")y Arla) (4.2)
k=0

where, bearing in mind rel.(4.1),
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Aolg) = 1,

1
Ag) = —35tt+1),
1
Aqxlg) = mﬂﬁxw+mm|$|wy
1
As(g) = M%:nx +13 432 —t - 2),
1. /¢ 8 8 r 5d 2 ot 1
A = 3 —-— - — = — e ] B e — e _—
4(0) 2 AHS 28 288 T 15 576 5+§+%v, (4.3)

etc. With respect to (4.2) the factorial moments (2.8) acquire the form

-1 i ni\e 1 /mye-t 1 /n;\9-2
Fy = M! MUTMV +% (7)) 4w+5(F) ESI..._ (4.4)

i=1

or applying rel.(2.6),

- 1 1
FiM'™1 =Gy + ,NQQTT»HAS + a.mQalfanv +o (4.5)
Averaging over events leads to the relation,
(FOMI™1 = (Gg) + (N Gy} s (@) + (N2Cyon)da(@) + . - (46)

To proceed further we assume that besides rel.(2.7) and (2.10) appearance of the
fractal structure is characterized also by an effective average multiplicity Ng satisfying
relation

(N-2Gy) o« Ny*gy x M (47)

with A = 0, 1, 2, ... ; the intercepts g, can be determined when A = 0. Let us add
that rel.(4.7) generalizes relation (2.7). Now, rel.(4.5) together with (2.7), (2.10) and
(4.7) lead to the following fundamental relation,

ag— 5 —rgy Al A
foMos = g M"Ta 4 g, M T~|~N¢Ac|v.+§1w>§ a-2 \N,MNV‘T . (4.8)

(4.8) It is seen that especially with large value of the effective average multiplicity Ng
rel.(4.8) gives an approximate equality between the corresponding slopes in the well

known form (2.11), a, = ¢ — 1 — 7,. On the other hand, rel.(4.8) allows to express -

e.g. the first term on its r.h.s. in terms of the scaling indices a,, the corresponding
slopes f, and the average multiplicity No {more details will be published elsewhere).
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5. Conclusions

In this paper the multifractal structure observed in antiproton-proton collisions
at /3 = 1.8 TeV as well as in the oxygen-emulsion nuclei collisions at 60 and 200 A
GeV are described in terms of the extended fundamental equation characterizing the
self-similar processes. In both cases the empty bin effect and in the second case also
the multiple bin phenomenon are observed. Moreover, simple assumptions especially
about energy dependence of the mixing angle v and the value of the scaling index
r = 7(q = 0) (specifying essentially the global properties of the underlying self-similar
processes) in the second case help to predict the behaviour of scaling indices (as well
as of other characteristics) at higher energies. As a concrete consequence we arrive
to the conclusion that in this case the energy E about 660 A GeV represents the
lower limit for the possible quark-gluon plasma formation. This direction of our work
allows to emphasize the presence of a deeper information involved in the scaling indices
r = 7(¢,7)- And it turns out that the energy dependent mixing angle y = y(E) might
play there the role of an order parameter.

Numerical value of parameters entering the reformulated extended fundamental
equation can be interpreted in terms of quantities describing the underlying self-
similar process. Approach applied in the present paper does not bring into consider-
ations, essentially, any free parameter.

It is shown that under certain conditions only one set of the scaling indices (from
those describing intermittency and multifractality in terms of the G-moments) is
sufficient to be considered because both sets are related.

Several stimulating suggestions are formulated in the present paper with the in-
tention to draw attention of the experimental groups in looking for additional data
(like intercepts and effective average multiplicity) which enter new relations governing
the multifractal structures. Also the proposal is introduced to search for fractal struc-
ture when the partitioning in the (pseudo)rapidity (instead of the particle density)
is performed. In general, to a better accuracy, experimental data on scaling indices
characterizing the same type of collisions at more energies are wanted badly.
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