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The contribution of like sign particle correlations to the rise of factorial moments
depends on the phase space variable used. It is small in the 1-dimensional phase
space given by the pseudorapidity 7, where the 2-body correlation function is
dominated by unlike sign particle correlations, but it is dominant in the higher
dimensional phase space. The differential 2-body correlation function of like sign
particles shows a steep rise for the four momentum transfer Q> — 0, comparable
with a power law.

1Presented at School and Workshop on Heavy Ion Collisions, Bratislava, 13-18 September 1993
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1. Introduction

The aim of this paper is to study the contribution of the like sign particle cor-
relations to the phenomenum of intermittency [1]. We cannot distinguish betweeq
the quantum statistical symmetrization effect, called HBT (Hanbury-Brown-Twiss)
effect, or BE (Bose-Einstein) effect, and other short range correlations of like-sigy
particles {e.g. from the decay of higher resonances). Nevertheless, for simplicity we
will call all short range correlations of like sign particles HBT or BE effect throughout
this paper.

After giving the definitions and the specification of the data sample in sections
2 and 3, we present the analysis in section 4. We used three methods: a) compar-
ison of ¢!* with ¢, b) the method of “pair subtraction” and c) a detailed study
of the two particle correlation function. For our analysis we used two different vari-

ables: @m pseudorapidity 17 and the four-momentum difference Q? between pairs. The
conclustons of our results are given in section 5.

2. Definitions

We use the usual “vertical” FM of order @:

M .
(F) = 1 $ (nm(nm —1) - (Am—it+1) 1 W a, [ dnepi(m, -, m)

M = (nm)* M = fo Tl dmpr(m)---pr(m)
. . (1)
where p; is the inclusive i-particle density function. For the computation of the in-
.nmmw..&m a binning of the original region A7 into M subintervals of the size 47 is
introduced. The ﬂwa_umn of particles in the m-th bin n,, is counted. The integration
domain Q25 = Y _,,_, Om thus consists of M i-dimensional boxes {m of edge length

én. The brackets ( ) denote the averages over the event sample.
Selfsimilar density fluctuations at all scales 67 would lead to a power law depen-

dence of (F:) on 61: ,
o () @

log (Fi) = a; + i - log A%v

This behavior is called intermittency [2] and the parameters ¢; (slopes of the (F3) in
a log-log scale) are called intermittency exponents.

Recently a considerable improvement of the factorial moment method to study
correlations has been proposed in [3] with the measurement of the correlation integrals
(C;). These-quantities are closely related to the (F;). The main difference is that the

integration domain 2 = Ru_ Q,n is extended to a strip domain Qs which depends
only on é7:

AQAQJVV - .‘sbm :» Q.da\&??, e Sv

" Ja T dmepr(m) - pr(ns) ®)
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The counting procedure for the correlation integral requires, that all i- tuples in {0, An)
which are separated by a distance less than 67 are counted. In [3] a detailed discussion
of the implementation of the (C;) has been given. The method of counting i-tuples
which is used in this paper 1s given by the “GHP” integral {4]:

Giomy = —— (it '3 I ©6n- o, — s, ()

~ Norm .
1< <ji by k2

where © is the usual Heaviside step function and Norm is obtained by “event mixing”
3].

& We have verified, that the values of {F;) and (C;) are almost identical in the case of
the analysis in 67 [5, 6] (differences are of the order of the statistical errors in our data
sample of 160.000 events, see fig. 1a). One advantage of (C;) is the better statistical
accuracy. We use here another advantage: since (4) depends only on differences of
phase space variables, we can replace 1%, — M, DY —(Pix, — Pix,)?, and 87 by Q2
where p is the four-momentum of a particle. Thus we are able to measure the (C;) as
a function of Q2, which is the theoretically preferred variable in jet evolution. In (4)
the product extends over all possible pairs of an i-tuple. It contributes to {C;) only
if all pairs satisfy the condition 5%, — Mj,,| < én.In the case of the Q%-analysis we
have modified this condition: only i-tuples with gl t+aist o+ am_...:s. < Q?, where
0% = —(Dix. — Pix, )2, contribute to (Ci) and we obtain:

(C:i(@%) = L {a MU (@’ - MU D ina) )

~ Norm . .
J1<-<KJi ky,k2

In analogy to the usual analysis with F M, we will search for a power law of the

(C;) as a function of Q”:
Pi
o (g:) (©)

Eqn. (5) is conceptually different from eqn. (4) for i > 3. However, the search for a
power law is motivated by the desire to search for selfsimilar dynamics in the produc-
tion of particles, not knowing a priori in which variable it might show up. The variable
Q? defined above has been proposed in (7] and used in the analysis of higher order
Bose-Einstein correlations [8]. In choosing this variables, we are able to demonstrate
the close connection between intermittency analysis and the analysis of Bose-Einstein
correlations. Moreover, we want to remind the reader that there exists the simple re-
lation between Q2 and the invariant mass M; of the i-tuple: Q% = MZ - T.Savm in the
case all particles are pions. The Bose-Einstein correlations are given in the differential
form. Let’s denote N®) (Q?) d@? as the number of i-tuples found in [Q?, Q% + dQ?|
where N() Ava is the i-body density function p; (ki,k2,.. ., k;), integrated over all

phase space variables k; except Q7, and let’s define mea (Q?) dQ? as the expected
number of i-tuples in the same interval in absence of correlations. ZMWa AQNV is the

product of single particle densities py (k1) .../ (k;) integrated in the same manner as
pi (ky, kg, ..., k). It can be obtained by Monte Carlo integration, or simply by event
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mixing?. The proper normalization of the event mixing term is achieved by demapq_
ing the total number of mixed i-tuples in the overall phase space region {in our nmmo”
[n] < 3,6 < 2x,pr > 0.15GeV) to be Neye - (n)* where (n) is the measured Bom.
number of particles per event in this overall region, and N,; the total ::EUQ..&M
events. This can be obtained e.g. by generating a Poissonic multiplicity %mﬂlv:ﬁmm

of the mixed events with the mean value (n). The Bose Einstein correlations are zm_”

ally presented in the form \Mwm = NG/ Ane:m“ - Zﬂm.wuv“ where const is choosen sy},
that this ratio is equal to 1 in a suitably choosen @? region (usually Q% > 1). The
connection with {C;) is given by eqn. (7): ;

?%ém:@“ _
Q»A@NV = 2 - 1
A ) S NG, @Y dg? | 3

We will measure in the following also the properly normalized differential w-voaw
density correlation function ;

N@)] vl
.\..Qv”|ﬁwv|AvI , ~”©w or md Amv

23‘:“& Qv

3. Data Sample -

The data sample consists of approximately 160.000 non-single-diffractive events
at /5= 630 GeV. All data were taken using a “minimum bias” trigger [10], requiring
at least one charged particle in the pseudorapidity range of 1.5 < [n| < 5.6 in each
of the downstream arms of the detector. All information used for this analysis was
obtained from reconstructed trajectories measured by the UA1 central detector [11].
Only vertex associated charged tracks with transverse momentum pr > 0.15 GeV/c,
|9l € 3, good measurement quality and fitted length > 30cm have been used. To
calculate Q?, we assumed that all charged particles are pions.

Extended studies [12] have been done in a previous paper concerning systematic
erros which may arise from track measuremnts in the UA1 central detector. When nec-
essary, corrections have been applied to the data for acceptance loss, double countings
of tracks, loss of nearby track pairs and 7y-concersions in the beam pipe. dé

The error of the pseudorapidity measurement varies between &, = 0.007 (jn] < 1.5)
and &, = 0.034 (1.5 < |n| < 3.5). The error of @? has been estimated from the errors
of track-fits and has been also determined directly at Q> = 0.17 from the width of
KO-decays. 1t is given by AQ? = 2Q - AQ + (AQ)?* with AQ ~ 8 MeV, where AQ.15
approximately constant over the whole region of investigation. j

2The event mixing technigue has been recently discussed and justified in refs. [3, 9].
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Fig. 1 The rise of the factorial moments and correlation integrals a) with decreasing &7, b)
with decreasing @Q*. The indicated errors are statistical only. Additional systematic errors
arise from uncertainties of acceptance corrections. Their magnitudes are: +1.5%(: = 2),
£3%(i = 3), £7%(i = 4), £14%(i = 5). Since these numbers are independent from 67 or
Q?, they concern only the absolute values of the FM or C: but not the slopes.

4. Analysis

4.1 Charge dependence of slope parameters

Fig. 1 shows the rise of Am;.v or AO;.V for two different data samples with decreasing
bin size in 67 (fig. 1a) and @2 (fig. 1b) in a log-log plot. The first data sample contains
only like-sign particles and the second one all charged particles. The comparison in
fig. 1 shows, that SM_: = WGW is fulfilled approximately in the (Q? representation
(table 1) whereas at the same time only small differences are visible in the 67 analysis®.
This demonstrates that the influence of the BE correlations is strongly dependent on
the variable used and turns out to be more important in the higher dimensional
phase space. It has been conjectured [14, 15, 16] that intermittency occurs in the
higher dimensional phase space and the bending of the (F;) or (C;) in fig. la s
due to the projection to the 1-dimensional pseudorapidity space. However, figs.1a,b
demonstrate, that with projections we may also select different mechanisms: in fig. la

3In all figures of this paper bin sizes increase from left to right. This differs from the usual
convention of drawing (F:) or {C;) values where the bin sizes increase from right to left.

4This is in agreement with an earlier UA1 analysis [13] , where in a very central {|n] < 1.5) region
even no difference between SM.: and GT has been found.
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Table 1 The results of fitting the (Ci) (i = 2,...,5) as a function of Q” to a power law (§) 1,
fig. 1b the fitted functions superimposed to the data are shown. The fitted slope Parameter,
are given for two different data samples. The errors indicated are only statistical. :

_ slope parameters _ @2 _ p3 _ P4 _ SMH_ {
all charged 0
particles 0.0348 4 0.0006 | 0.078 £ 0.001 | 0.213 £ 0.004 | 0.338 +0.019 |~
like-sign :
particles 0.0522 + 0.0009 | 0.147 £0.001 | 0.443 £ 0.010 | 0.855 £ 0.051

the like sign particle correlations are significantly smaller than the correlations of al]
charged particles, but they dominate (for small @?) in fig. 1b. It should be stressed
that in fig. 1b a good linearity shows up in agreement with eqn. (6) and the conjecture
of intermittency. Slight deviations from this law (a bending upwards of (C2) and (Gs)
for the like-sign sample ) vanish, if all charged particles are considered (open circles),
This indicates, that the linearity is due to an interplay of all correlations, irrespectivel
of the distinct dynamical origin.

In this context, we want to refer also to another measurement of the correlations
in the 3-d (7 — ¢ — logpy) phase space. There the integrated kumulant ks shows a
power law over four magnitudes of phase-space volume elements [17}.
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Fig. 2 The Bose-Einstein ratio before and after the subtraction of pairs with small Q»‘

4.2 The method of “pair subtraction” T

With this metlhod we attempt to measure the rise of the {C;) in absence of the
Bose-Einstein effect. To this end, like-sign pairs with small Q? were cut away until-8
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Fig. 3 The effect of the pair-subtraction (BE-cut) on the second order correlation integrals.

data sample is (artificially) achieved which exhibits no Bose-Einstein effect as shown
m fig. 2.

The behavior of the (Cy) before (open circles) and after (full circles) the subtrac-
tion of the BE pairs is shown in figs. 3a-b. In the case of the analysis in Q? (fig. 3b) and
the sample of like-sign pairs no residual rise is left after the subtraction as expected,
since (Cy) is (apart from a normalization constant) the integral over the BE ratio
shown in fig. 2 (see eqn. (7)). There is some residual rise in the sample of all particles
in fig. 3b but it vanishes for Q% < 0.2 which indicates that in the region of small Q*
only the BE correlations contribute to the overall 2-body correlation function.

The situation is different in the case of the analysis in én (fig. 3a): there is after
the subtraction of BE pairs still some rise also in the case of the like-sign particles
for 6 > 1 indicating the presence of some correlations which do not originate from
the very short range BE correlations in Q2. Only a small rise is left for 67 < 1. We
conclude therefore, that the rise in that region in the like-sign sample is mainly due
to BE correlations.

_ In the case of all particles (fig. 3a) the subtraction of BE pairs has only a small
influence and we conclude that the rise is mainly due to strong correlations of unlike-
sign pairs.

The region in én which can be populated by BE pairs is given by the following
relation [5]:

Q7= — ?:m? + Sw? — 2myp,mr, nOmrQSV + Aﬁw,_ + wwm — 2p1,PT, oOmQ&Z (9
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with 67 & 6y and m3 = m? + p%..
Eqn. (9) shows that pairs with the same Q? can contribute at different 87 values
dependent on the transverse momenta pr and the difference of azimuthal angles .X%
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Fig. 4 Bose-Einstein ratios fpg for different samples, as indicated.

4.3 A detailed study of the two-particle correlation functions

If one assumes that intermittency is indeed present and - as fig. 1b suggests - is
dominated (in Q?) by the BE correlations, one would expect that the shape of the
BE ratio itself should be represented by a power law rather than by an mvangm._
(or Gaussian). Therefore we present a measurement of differential 2-body density:
correlation functions f(l), (I = én or @?) for like-sign pairs and unlike-sign pairs
seperately and search for a singularity® for I — 0, as an indication for intermittency.
Fig. 4 shows the ratio .xﬂmmw, = (1/const) - f(Q?). This is the usual form in which,
BE correlations are presented. Fig. 4 shows a comparison of the samples of Eﬁm-mmmu_"
pairs with unlike sign pairs and all charged particles. Each sample is normalized to H_
separately for Q% > 1 by choosing “const”. One observes a strong dominance of unlike-
sign pair correlations for 0.03 < Q? < 1 which is at least partly due to resonance mnm,
particle decays (e.g. there is a broad peak at Q? =~ 0.5 GeV/c? which isdue to p &mnwww
(m, = /Q?+ 4m2) and a peak at Q? ~ 0.17 GeV/c? which is due to remaining K$
decays, where the decay point could not be resolved from the vertex). However, at,
very small Q%(< 0.03 GeV/c?) this function is nearly constant. Contrarily, the like-
sign particle correlation function rises above one only for small Q*( <024 GeV/c?).

For very small Q2( < 0.03 GeV/c?) there is a cross-over and the function is rising

5 4 : : . f
- hot in the mathematical sense: either due to the limited detector resolution or because of
physical reasons there will be a cut-off at finite .
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Fig. 5 The normalized two-body density correlation function f, eqn. (8)
a) as a function of &1, b) as a function of Q.

very rapidly for @* — 0. Fig. 4 suggests that a possible singularity in the correlation
function would be due to the like-sign particle contributions only. To resolve the small
Q? region we choose again the log-log scale in fig. 5. Fig. 5b shows f{Q?), the same
functions as fig. 4, the only difference — besides the different binning — is the proper
normalization to the uncorrelated sample as described in section 2. Fig. 5b confirms
the observations in fig. 4. The unlike sign correlation function stays approximately
constant for Q% < 0.17. The rise near Q?* = 0.001 can be attributed partly to the
onset, of y-conversions {which contribute mainly to the region Q? < 0.001) but may
be also at least partly due to the Coulomb attraction of the unlike sign pairs (+
10% increase at Q% = 0.001 expected). The like sign correlation function continues
to rise at least until Q% = 0.001 GeVZ2. Once more we show the same analysis in é7
(fig. 5a). A comparison between figs. 5a and 5b confirms the results of the previous
investigations: the 2-body correlation function of all charged particles is dominated by
unlike-sign particle correlations when analysed in &7 but dominated by the like-sign
correlation function when analysed at small Q2.

The good resolution of the functions presented in fig. 5b permits to study the
functional form of f(Q?) of the like-sign sample, and especially to search for a power
law dependence. In fig. 6 we show a comparison with the following functionsS:

Q) = a+b-(Q)77 (10)

6The functional form of (10) has been proposed in [18] for a 3-dimensional analysis, a possible
contribution from long range correlations can be absorbed in the parameler a.
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Table 2: Parameters of the fits, shown in fig. 6. The errors include statistical and systematijc
uncertainties. The values in the brackets are obtained with sample 2, see text. Q? is in unitg
[(GeV/c)?], r in [fm]. The data are not corrected for Coulomb repulsion.

_‘mﬁ to Eq.10

_ fit to Eq.11

{ fit to Eq.12 B

@ = 1.25 + 0.02 (1.27)

Il

e’ = 1.357 % 0.003 (1.359)

a” = 1.355 + 0.003 (1.357)

b = 0.08 £ 0.02 (0.07)

b = 0.84 % 0.10 (0.96)

Il

A = 0.43 & 0.13 (0.56)

® = 0.39 + 0.06 (0.43)

r = 1.39 & 0.11 (1.50)

r = 1.26 + 0.06 (1.31)

¥ /NF = 2.14 (2.05)

X2/NF = 2.61 (3.65)

x°/NF =2.23 (2.90)
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@) = o +¥exp(-rQ) (11)
AQY) = a"(1+2M1 - A)exp(—rQ) + A\ exp (—2rQ)) (12)

Each of them has 3 free parameters: @, b, ¢ {eqn. (10)), a’ , ¥, r (eqn. (12)) and
a”, A, r (eqn. (12)). The best agreement with the data (at small Q?) is obtained by
the power law of eqn. (10}. Subsamples, with positive pairs or negative pairs only,
agree within their statistical errors, each showing the excess of pairs at small Q? over
an exponential ansatz separately. We have also studied the systematic uncertainties
which arise from the inclusion of residual fake pairs on one side, and from the loss
of real pairs on the other side by varying the selection criteria for accepted pairs.
The result of this study gives a systematic uncertainty of +9.0%, +3.2% and -8.0%,
-2.9% at Q% = 0.001, 0.005 (GeV/c)?, respectively. It should be stressed that with
each selection and in particular with a sample (called sample 2) where all fake pairs
have been removed by rigorous cuts, and which has been corrected for the severe loss
of real pairs by Monte Carlo afterwards, we come to the same conclusion as above:
the best agreement is obtained by a power law.

Table 2 contains the fit parameters of eqns. (10), (11) and (12) for the data as
defined in section 3 and shown in fig. 6, and for sample 2 (in brackets).

In conclusion, the data of fig. 6 indicate, that one scale might be not enough to
describe them satisfactorily, but they are in agreement with the conjecture of scale
invariance.

5.Summary and Conclusions .

e We studied the contribution of the (very shert range) like sign particle correla-
tions which we call the HBT or BE effect to the rise of factorial moments (or
correlation integrals) with decreasing phase space bins.

o We used two variables for this study:

(i) the 1-dimensional variable é7,
(ii) the squared 4-momentum difference Q? between two particles.
A study with a similar formalismin both variables was possible with the help of

the correlation integrals [3], quantities which are closely related to the factorial
moments, but which depend only on differences of phase space variables.

1.3 ’ R PRI, TR

1072 10” 1

Fig. 6 The two-body density correlation function for like-sign particles fitted to (10), (11),
(12), see text. The indicated errors are statistical only.

o Three methods have been applied:

a comparison of slope parameters @2 and @' of the rise of the (C3),
the method of “pair subtraction”,

a search for a singularity in the two-particle density correlation function
for like-sign pairs and unlike-sign pairs separately.

Qur conclusions:

o The contribution of the HBT effect depends on the variable used. Whereas i1t is
weak in the case of &7, it is the dominant contribution to the rise of {C;) with
decreasing @Q* (Q* — 0).

o Different dynamical mechanisms are dominant in the 617 and Q? analysis, this is
confirmed directly by method 3: when analysed in 7, the two particle correlation
function is dominated by the contribution of unlike-sign pairs whereas when
analysed in @? the dominance of the like-sign pairs shows up very clearly for
small Q2 (< 0.03 GeV/c?).
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o The correlation integrals in fig. 1b show an almost perfect power law dependence
of (C;) on @Q? over the whole region of analysis. It is due to the interplay of
different mechanisms, however, for small Q? the {C;)s are dominated by the like
sign particle correlations? for all orders i = 2 — 5.

o Restricting to the differential two-particle density correlation function, we ob-
serve a steep rise compatible with a power law down to Q% = 0.001 (GeV /c)?
for like sign pairs. Recently an attempt has been made to understand inter-
mittency [21] in terms of this behaviour. Let’s assume that all like sign particle
correlations at small Q2 are due to the H.B.T. effect. Then arguments have been
given in [21], that a power law in the correlation function would imply strong
fluctuations of the size of the interaction region. One possibility could be, that
the interaction region is itself a fractal extending over a large volume.

It would be desirable to clarify in a future study the question if the interference
effects from the decay products of known resonances {22, 23] are strong enough to
explain the behaviour observed in fig. 6.
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