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CONDITIONAL MEASUREMENTS IN MICROMASERS: FOCK
STATES VIA TRAPPPING CONDITIONAL MEASUREMENTS
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We propose a new method for production of Fock states of a cavity field in a
micromaser via conditional measurements.

We consider a lossless micromaser driven by a stream of two-level Rydberg atoms
initially prepared in the upper maser level [1]. The Rydberg atoms are injected into
the micromaser cavity on a very slow rate such that only one atom is in the cavity
at a given time. It is assumed that a particular Rydberg atom interacts with only
one cavity mode. The interaction between a single two-level atom and a single-mode
cavity field can be described in a framework of the Jaynes-Cummings model {2] with
the Hamiltonian in the dipole and the rotating-wave approximation (we adopt units
such that & = 1}):

, H ~ _ _
H = wp ?5 + mv +5wads + A Ew-:wt_ :v

where wy is the atomic transition frequency; wy is the frequency of the cavity mode;
A is the atom-field coupling constant; a and al are the field annihilation and cre-
ation operators, respectively ([a,a'] = 1); &3 is the atomic inversion operator, and
¢4 are the atomic “spin-flip” operators, which can be expressed as the atomic pro-
jection operators, i.e. a3 = le){e} — g){gl, 64 = le){gl, and 5_ = |g){e], where e}
and |g) describe atomic upper and lower states, respectively. In the interaction pic-
ture in the two-dimensional atomic basis the evolution operator corresponding to the

Hamiltonian (1) can be written in the form [3]:
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In the case of the exact resonance between the atom and the field (wa = wr) the
operators U;;(t) are given by expressions (3):

Q:S = 8m0=,+5 QSAD = €0s Qnt;

. in Qn 1t ) . sinQnt
Uz (t) = —ida! mEO et Uia(t) = —ira a. 3)
n+1 n
where Q, = A(n)'/2. 4)

In an ideal situation one can consider that at the initial moment (¢ = 0) the w...oBWM_wE
system is in a. pure state while the atom and the field are uncorrelated. Providing

: 0 (0) X
both the atom and the field are at t = 0 in pure states _em’vv and _.6_., ), —.mm.ﬁoosﬁu_%
then the initial atom-field states vector can be written in a factorized form:

O Ly = W) @ (W), ()

The pure initial state of the cavity field in the Fock basis can be described as a
superposition of number (Fock) states:

00 oo ,
_%VHMQ;;?M_%,Nu_. @
n=0 n=0
The atom is initially prepared in the upper level je), i.e.
L) = fe). )

is gi th
At time ¢ > 0 the state vector Ewuwmﬁvv of the atom-field system is given by the
‘expression

1 (1) = [20(0) @ ) + 121 © lg), )
where - .
180(1)) = U ()IED) = Y () cos Qnanptin)i (9a)
‘n=0
120(8)) = Un (1Y) = =i W CO(n) sin Qnsytin + 1). (9b)
n=0

The operators Ui;(t) are given by Eq.(3) and Q) = \//\m.. .

After the first atom-field interaction which lasts for a time At the outgoing atom
is probed by a static electric field when it lefts the owi.@. m.:.sc_nwsmocm_w we impose
the condition on the result of the measurement; we will be interested only in those
measurements where the state of the atom after the interaction is the same as at the
beginning. In other words we are interested only in those sequences of measurements
where no energy is transferred from the field to the atom and vice versa.

According to the measurement postulate of the quantum mechanics [4-6] the state

immediately after the measurement of the physical quantity A on the system (W) is
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the normalized projection of |¥) onto the eigenspace associated with the outcome of
the measurement. In particular, if we assume the initial state of the atom-field system
to be given by Eq.(5) with _em;v and _6A>8v given by Eqs.(6) and (7), respectively,
then at time At the atom-field system is described by the state vector [Eq.(8)] with
t = At.

If at time At the atom-field state vector (8) collapses due to the measurement

of the atom in the state _GWSY then the state vector of the cavity field after the
measurement has the form:

(FD1Q L(an)

_em.,:v - = , (10a)
VIEDND (an)p2
or, alternatively,
(0) >
where
() = COw) cos A At (11)

(500 [CO(m)|? cos? QmenyAt] '/

In the case of the lossless micromaser the field state _em.,:v represents an initial
state for the second atom-field interaction. The second atom is again supposed to
be prepared in the state _emsv. After the interaction time At the second atom is
conditionally measured in its initial state and the cavity field is now in the state:

[e0]

©)1g ()

vy = (Vi |¥aZp(AL)) =3 CO(m)n) a9
F ’

VIO a4

where _emwmAD&v is the atom-field state vector which evolves from the “second” ini-

tial state E%J@EM&Y In an analogous way we can obtain an expression for the field

state vector _emwcv after the sequence of K atoms are measured in their initial state.
The conditional measurement process as described here has been recently studied by
Sherman and Kurizki [7] in connection with production of quantum-mechanical su-
perposition states of light in micromaser cavities (see also paper by Brune et al. [8]).
The recurrent expression for amplitudes C(¥)(n) reads:

CHE=1(n) cos Q41) At
[0, [CE =D (m)? cos? b?.tvDL

At this stage of our analysis we make an additional assumption. Namely, we
impose a condition on the length of the time interval during which each atom interacts
with the cavity field. We will assume that At is such, that for one value of n (let say
for n = N) the condition . '

C¥(n) = TR (13)

_nOmDAZ.:an_ =1 A—Aav
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_is fulfilled, while for any other n (i.e., for all n # N) we have
_GOm S?+:>~_ < 1. {14b)

The condition {14) is equal to the trapping condition introduced by Meystre [9] which

reads
M(N + DAL =g, (15)

where ¢ is an integer. Nevertheless we have to stress here the difference between
the present approach based on the conditional measurement process (therefore, we
can call our approach as the {rapping condilional measurement) and the method
discussed by Meystre [9] who have analyzed the standard micromaser dynamics [2]
with no conditional measurements.

If we rewrite the expiession (13) for the probability amplitudes CE)(n) in the
form:
CO(n) cosX Q1) At

155 @(anje (a2

CHF)(n) = (16)
then with the use of the condition (14) we can m.wm:% find that in the limit of large K
the probability amplitudes C)(n) take the following form

lim C¥(n) =6 N, (17)

K—o0
which describes the fact that after the trapping conditional measurement the initial
field state collapses into the Fock state |[N). Changing the interaction time At we
can prepare in the single mode high-Q cavity any Fock state with an apriori given
value of N. In Fig.1a we plot the photon number distribution P(n) of the field mode
as a function of the number (K) of atoms conditionally measured after their inter-
action with the cavity field. The transformation of P(n) from the initial Poissonian
distribution (corresponding to the coherent state |a))

Q.:

P(n) = |CO)|% COn) = e=lel’2 ) (18)

n!

with @ = 5, to the Kronecker-delta function describing the Fock state |25) is clearly
seen. In this case we chanse the interaction time At as AAL; = 7/\/26.

The probability to observe a sequence of K atoms in the upper siate |e) 1s given
by the expression

pE) = M _ﬁ.SX:V_w cos?® Qi AL (19a)

n=0
With the condition (14) the probability (19a) reads
PE) ~ |COYNY2, (19b)
which means that if initially the Fock state |N) contributed significantly into the

superposition (6), then the probability to observe a sequence of K atoms in their
upper levels is rather high.
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Fig 1. The .E_o»oz number distribution P(n) of the field mode as a function of number K o°
atoms conditionally measured after their interaction with the cavity field. The field is initially
prepared in the coherent state with mean photon number equal to 25. The interaction :_:,1

i1s taken to be AAtl; = #\/\w (a); AAL; = x/\/11 (b); and AAL; = wﬂ\,\_Jl (c).
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In conclusion, we have shown that if in a lossless ::20-.:@2. we combine the
idea of the conditional measurements with the trapping condition :N.C,:_m: we Q:W
(at least in principle) produce any m,on.._a,..wwmpn of the cavity field, providing this Fock
contributes to the initial state of the field mode'. .

It is worth to note, that if there are several Fock states {N,,,) (m=0,.., M) S_:n__
fulfill the condition (14), then after the sequence of conditional measurements a pure

T e [l cowne]

is produced in the nwiﬁu The m_mmm::w-:mm; sequence of K excited atoms is in this
case realized with the probability

M
P = S |CO (N ). (21)

m=0

From Fig.lb we see how a pure superposition of two Fock mnﬁom m.m _:oa:.ﬁx_ from
the initial cohertnt state (a = 5). The interaction time At in this case is chosen
to be AAt, = s‘\z\ﬂ For this value of At erm_.n are two <w_.:mm of n for ,E:_q,.:
| cos(AAty/n + 1)| is equal to unity, n = 10 and n = 43. From Fig.1b we see that in
the limit of large K the saperposition state

e +lcoEr]

L C943)

:OV + 3 1/2
[ICO10)[2 + [CO(43)1?] ,
T LBl (22)
is v._.om_snm&. If we double the interaction time Ats, i.e. we nro.Omm AAt; = wﬂ\/\ﬂ =
9Al, then obviously the condition |cos(AAtzvn + )| = 1 is fulfilled for n = 11
and = 43. Simultaneously one can find that .oOmC.DJ/\qﬂ.‘.l_-v_ almost equal to
unity for n- = 24 (namely, |cos(AAtsvn + 1)| ~ 0.99887) Because of the a.mn? erma
for the Poissonian distribution with a = 5 the relation P(24) > P(10), P(43) is
valid one has to expect that during the measurement process .arm Fock state |25) 1s
transiently produced. For large values of K this Fock state is mfw_:mmmmﬁ_ Umn.&_m.m
cosK (2r/25/11) — 0 and in the stationary limit n.ro mcvonvOm_sAo:‘mamna (18) is
produced in the cavity. This _um.rwio:n. is nicely seen .in m._mr“ .

The scheme described above is valid not ‘only for pure initial states of the cavity
mode but can be applied for any statistical mixture gtate of the field anm.

There are three main restrictions which have to be taken into mooo_:;.; one wants
to think about mxvnlama,a.m_ realization of the proposed morow:mm Enmn._vn it is detector
efficiency of excited atoms is less than 100%.: Secondly, velocity mw_mnsoa of @m atoms
has to be performed with ‘an extreme accuracy. Thirdly, an environmental influence
can change the dynamics of the process under consideration. ;

! 43),
ey = 143)

- 1If ¢he cavity mode is influenced by an environment, then the Fock state |N) can appear after

" some time and then it can be selected more pronouncedly via the conditional measurement process

. “as-described above. Anyway, the role of decay and/or amplification of the cavity mode has to be
discussed in more detail. :
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