HEAT CAPACITY OF HIGH-TEMPERATURE SUPERCONDUCTOR (Bi,Pb)₂ Sr₂ Ca₂ Cu₃ O_{10+x}

L'. Pastor, O. Buchmanová

Department of Heat Engineering, Faculty of Mechanical Engineering
Slovak Technical University
Nám. Slobody 17, 812 31 Bratislava, Slovakia

Received 23 April 1993, in final form 6 July 1993 Accepted 9 July 1993

The heat capacity at constant pressure for high temperature superconductor (Bio.9 Pbo.13)2 Sr₂Ca₂Cu₃O_{1+x} was measured. The data have a peak at $T_c = 107.6$ K and the results are in agreement with measurements of other authors.

Heat capacity of high temperature superconductors (HT_cS) sample with starting composition (Bi_{0.9}Pb_{0.13})₂Sr₂Ca₂Cu₃O_{1+x}, prepared by National Research Institute for Materials, Prague [1] was measured in adiabatic calorimeter by steady state method. The mass ratio for HT_cS sample and parasitic mass (germanium resistance thermometer and electric wires) was approximately 40: 1. The porosivity of this HT_cS is approximately 15% (the paper [1] gives density 5200 kg/m³). For evaluation the folowing equation was used:

$$c_p = \frac{Qt}{m\Delta T}$$

where c_p is mean heat capacity for mean temperature $T = (T_1 + T_2)/2$ and $\Delta T = T_1 - T_2$. Each of the steps (for temperature growth from T_1 to T_2) was performed with $\Delta T = 1$ K. Heat capacity vs temperature for this sample, with critical current density [1] I_c at 77 K and zero magnetic field 1070 A/cm² is shown in Fig. 1.

The accuracy of the experiment has been estimated from mean-root-square error, which was evaluated from the relation

$$\delta_c = \frac{1}{m\Delta T} \{ t^2 \delta_Q^2 + Q^2 \delta_t^2 + \left(\frac{Qt}{m}\right)^2 \delta_m^2 + \left(\frac{Gt}{\Delta T}\right)^2 \delta_{\Delta T}^2 \}^{1/2}$$
 (2)

Measured quantities $m, t, \Delta T, Q$, evaluated values for c_p and the mean-root-square error δc for six temperatures are shown in the Table 1.

Fig. 1. The heat capacity vs. temperature

Table 1.Calculated value C (from (1)), σ_c (from (2) and measured values $m,\ t,\ T,\ Q$ for $\operatorname{HT_cS}ar{T}$ - average value of measured temperature, T - choosen temperature.

Tr. 6	-	c[J/kg/K] 205 401	c 202.679	1./54		σQ +0.025	W[mW] 222.133	T0.022	$\sigma\Delta T$ ± 0.0	2.845	-	0, +0 100	32.500		700 0 + 0 00s	12.050		T 85 560	× 68	7
	200.141	959 141	9 253 799	4 2413	CZ0.07	+	3 221.984	±0.022	\dagger	2.496	TU.100	+	00 - 35.250	C00.005	+	$50 \mid 12.050$	24.093	_	5 95 K	•
	331.085		295 500	4.5777	±0.025	100.00	995 021	± 0.022	1.000	1 602	±0.100	000.000	30 830	± 0.005	0000	050	100.189	100.00	1 30 K	-
	352.968		+	613	± 0.025	202.083	+	40 099	1.220	1 000	+0.100	22.300	20.2	± 0.005	060.71	19 050	108.205	N OUT	7 001	
-	374.528	367.580	7.094	7 60 4	±0.025	232.299	770.0T	10000	1.18	10.100	100	21.700	1 0.000	+ 0 005	12.050		110 497	110 K		
10.01	495 014	421.053	10.288	10.020	7000x	212.843	±0.022	0.000	0.930	±0.100	0	22.500	H 0.000	1000	12.050	0.67.611	119946	113 K		

The fitting curves are:

$$c = 44.354 - 1.038T + .0034T^2$$

(3)

for the temperature interval (79.2 - 105.8) K, as was determined from 43 measure-

$$c = 9.495 \times 10^6 - 2.676 \times 10^5 T + 2.515 \times 10^3 T^2 - 7.874 T^3$$

(4)

for temperature interval (105.5 - 108) K, determined from 9 measurements, and

$$c = 5.971 \times 10^3 - 1,179 \times 10^2 T + 0.061 T^2$$

(5)

for temperature interval (108 - 114.3) K, calculated from 14 measurements.

approximately 2.5 mJ/mol K² which is also in agreement with other measurements at $T_c = 107$ K. The results entitle to use the same conclusions for fluctations will be respected the theoretical debye function and temperature dependence ${\it R}$ [2]. The authors prepare the solution for HT $_cS$ characteristics introduction in which like is described in Ref. 2. The heat capacity jump c at T_c (e.g. $\Delta c(T_c)/T_c$) is like is shown for the polycrystaline sample [2] of BPSCCO (2223 phase) with peak this sample of HT_cS has very similar change of the heat capacity vs temperature, temperature T_c for this HT_cS is about 108 K [1]). Measurement attested that The heat capacity vs. temperature reaches its peak at $T=107.6~\mathrm{K}$ (critical

REFERENCES

[2] J. E. Gordon , S. Prigge , S. J. Collocott : Physica C (1991) 185 [1] V. Plecháček, H. Hejdová, Z. Treibalová: Cryogenics 30 (1990) 11