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The variations of lattice potential curvature as a result of the occupancy of
defect energy states can induce asymmetric broadenings in the spectral lines
of the defect. We derive an explicit expression for the asymmetric lineshape
function when the defect interacts with a comtinuum of lattice vibrational
modes under such a circumstance and show that the second moment exhibits
a T*-dependence.

With the advent of tunable lassers optical spectroscopy of defects and impu-
rities in insulating solids continues to be a field of active interest [1]. The defect is
usually a localized electronic system; optical absorption or emission involving any
two states manitests itself in a sharp line, the so-called zero-phonon line, whose
linewidth, for low concentrations of defects at least, is due principally to the inter-
action with the host lattice.

The theoretical foundation for treating the defect-solid systems is the (suit-
ably modified) Born-Oppenheimer approximation According to the latter approx-
imation, the potential whose curvature governs the lattice vibration frequencies
depends on the energy level in which the electronic state is occupied. It has been
shown [2,3] that if allowance is given to the circumstance that the lattice curvature
varies with the defect state, the zero-phonon line is asymmetrically broadened,
a conclusion which is based on an examination of the Fourier transform of the
lineshape function. However the analysis is performed under the simplifying as-
sumption that the defect interacts with only one mode of lattice vibrations. This
assumption would be appropriate if the phonons involved belong to a localized
mode, but for a vast majority of systems the interaction embraces a continuous
spectrum of lattice modes. It is the purpose of this note to attempt an improve-
ment of that previous analysis by considering the lineshape function for a defect in
interaction wiht a phonon continuum of whatever dispersion. Below are given the
exact expressions of the zero-phonon lineshape function and its second moment as
well as an argument for the latter's usefulness.
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Consider an optical transition between two defect states l[a > and [b >. Let Q,
and Qg be their respective energy levels (h = 1), and let wWyalwys) be the phoney
energy of phonon state ¢ > when the defect is in state la > ([b >), the label branch
being included in the notation. All energies are the renormalized values. Then the
exact Fourier transform [gy(t) of the lineshape function I'y4(w) is [3]
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where Vog and Vj, are the defect-lattice interaction thatrix element and 8 = 1/kT,
k is the Boltzmann constant and T the temperature.

Our previous calculations of the optical lineshape [3] and of the analogous Ra-
man spectrum [4] indicate that the exponential factors in the numerators within
the square bracket of Eq.(1) lead to phonons absorption and emission process and
that unless the number of phonons absorbed is compensated by the number of
phonons emitted, these contribute spectrally to the sidebands accompanying the
zero-phonon line. Hence for the purpose of studying the zero-phonon line, one
expands Eq. (1) in powers of exp(tiwgpt) etc. and collect only those terms which
respect the phonon-number conservation stipulation, i.e. the terms which corre-
spond to transitions from | Q, .. Mwgg ... > to | Qy...muwgy ... > (m being an
integer). The result denoted by HM_MVQV is
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where, and hereafter, the following abbreviated notations are used
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In arriving at Eq. (2) use has been made of the generating function for associated
Laguerre polynomials hm.i in the form
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as well as the property of the double sum
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which is valid for any bi-indicial function f(r, n). Eq. (2) may be further simplified
by utilizing the product formula of the Laquerre polynomials Lg:
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in which NV is the total number of lattice vibration modes and Z, w.m the partition

function for a single-mode oscillator, Z, = (1 — e™#¥<)~!. The lineshape func-

tion _AMVAEV for the zero-phonon line can now be obtained by taking the Fourier
a

transform of Eq. {5):
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The presence of a series of closely spaced Dirac’s %.w:m ?unﬂm:m makes it n:.:m
apparent the asymmetric nature of lineshape for optical trensitions under consid-
eration. .

Even though for application to specific systems Eq. Qv can _um. readily evalu-
ated numerically using the standard Brillouin zone integration .emn.rEo:mm, one may
more easily assess the significance of the phonon frequency variations on asymmet-
ric line broadening by considering the second moment (Aw)? of the lineshape:
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With the use of Eq. (6), the second moment takes the form
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where v = (¢?#s —1)~! is the phonon distribution function. In the Debye approx-
imation this second moment is seen to exhibit a T“*-dependence for n.o::vmamsﬁmm
higher than Debye’s temperature. Thus, in addition to the asymmetric shape, the
measurement of the temperature dependence of the second moment can serve to
affirm or negate the influence of variation of lattice _uo_.kos.:.w_. curvatures on optical
absorption vis a vis the effect of random environment i:.ow is also a known mech-
anism for asymmetric spectral broadening (the so-called inhomogeneous broaden-
ing.) The latter is more sensitivite to defect concentration then to the temperature
of the host lattice.
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In summary, we obtain an explicit expression for the asymmetric lineshape
function and we point out the T*-dependence of the second moment. as a signature
for the influence of lattice curvature difference on optical transitions of defects.
Lattice curvature variations also influence defect Raman lines [4] and exciton ab-
sorption lines [5); it would be of interest to see how much of the present analysis
can be carried over to these areas.
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