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Translational-vibrational energy transfer in molecular collisions is studied by
means of a semiclassical approach. The trajectory for the relative motion is
obtained from the classical equations of motion for an effective interaction
potential. The problem is then reduced to solving the Schrodinger equa-
tion for a harmonic oscillator with a time-dependent perturbation. Further
simplification is achieved by expanding the interaction potential in a Taylor
series around the quantum-mechanical expectation value of the vibrational
coordinate. The advantage of using Lie algebraic methods is illustrated. En-
ergy conservation and detailed balance within this approximate scheme are
discussed. Results are shown for a simple atom-diatom collision model.

The semiclassical approximation [1] poses a simple and reasonably accurate
way of calculating translational-vibrational energy transfer in molecular collisions.
This approach is based on the assumption that some degrees of freedom, usually
translational and rotational ones, can be described by means of classical mechanics.
As a result of introducing the classical trajectories into the interaction potential
a time dependent Hamiltonian operator is obtained for the vibrational degrees of
freedom.

If the displacement of the vibrational coordinates from properly chosen refer-
ence values is found to be small, the interaction potential can be replaced by its
Taylor expansion around them. Usually, terms of order larger than the second one
are neglected (harmonic approximation) in which case the Schrodinger equation
for the vibrational motion can be treated by means of Lie algebraic methods [2-6].
This fact greatly facilitates the calculation and allows one to treat systems with
many degrees of freedom [5].

The equilibrium position is most often chosen to be the reference coordinate
value (2, 4, 5] though remarkably more accurate results are certainly obtained by
using either the classical vibrational trajectory [3] or the expectation value of the
vibrational coordinate (7, 8].
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{1, 9, 10] (see also Ref. [11] for the case of rotational transitious). Accurate results

Alective potentials have been proposed for the classical relative motion
come from the expectation value of the interaction potential in the time-dependent
cerniclassical state [9]. As far as we know this effective potential has not been used
together with the harmonic approximation and the Lie algebraic methods which
enable one to easily generalize the approach to many degrees of freedom [5].

The purpose of the present communication id to show that the harmonic ap-
proximation and the Lie algebraic methods are most suitable for introducing im-
proved features into the semiclassical approach such as the expansion of the inter-
action potential about the expectation value of the vibrational coordinate and the
use of an effective potential for the classical relative motion.

For the sake of simplicity we consider here a simple model for the collinear
collision between an atom A and a diatornic molecule BC. If the vibrational po-
tential for the diatomic molecule is assumed to be harmonic then the hamiltonian
operator can be written {1, 12]

H(q,R) = P*/2u+ Ho + V(¢, R), Ho=1/2(+1°), (1)

where yt = mame/[mp(ma +mp + mc)], g is the displacement from equilibrium
of the vibrational coordinate, R is the distance from A to the center of mass of BC
p = —id/0q and P = —iG/dR. Units are chosen so that the reduced mass of nra,
oscillator, its frequency and h equal unity.

In the semiclassical approximation a trajectory for the relative motion is ob-
tained from the classical equations

dR/dt = Pfu, dP/dt=—0V(R,t)[8R )

where V(R,t) is an appropriate potential that vanishes at +oo (the explicit time
dependence comes from the vibrational motion). It is then introduced in Eq. (1)
to obtain the semiclassical Hamiltonian H,.(g,t) = Ho+ Vg, R(t)]. If the oscillator
was in the vibrational state |m) at ¢ = to, where [m) is an eigenstate of Ho with
eigenvalue m + 1/2, then the probability of finding it in the state [n) at the time
tis mm.<m= by Pmon = [(n|¥m(t))|?, where W, (t) is a solution of the Schrodinger
equation

d¥ o (t)/dt = —iH, ¥ m(t), 3)

with the initial condition ¥, (to) = |m).
The effective potential V(r,t) is often chosen to be V(0, R) (1 - 6]. However,
better results are obtained from the effective potential [9]

V(R, 1) = (¥m |V (g, R)|¥m)- (4)

From a practical point of view, the classical equations (2) are integrated from
to to t; chosen so that V[R(to). o] and V[R(ts),s] are both small enough. At
the same time one has to solve the Schrédinger equation (3) because V depends
on ¥, (t) as shown in Eq. (4). This composite calculation can be carried out by
expanding ¥m(l) in the basis set of states of Ho. The potential for the relative
motion depends on the trajectory R(t) and therefore on the initial kinetic energy.
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If £ is the total energy the initial momentum is P = 2B — @Ezim where
L, =+ /208 he vibrational energy of the oscillator in the initial state. On the
other hand, the initial momentum for the calculation of the probability Prom is
P, so that we would use two different time-evolution operators in the calculation
of those transition probabilities. To overcome this difficulty, which arises {rom the
approximate nature of the wethod, the initial value of the classical momentum is

commonly chosen to be {2]
P(to) = (Pm + Pa)/2 - (5)

The energy transferred to the oscillator is AE = AGEQHV_EO_GSQDV — {m|Ho|m).

The calculation is greatly simplified by means of the harmonic approximation
which consists of expanding the perturbation potential in a Taylor series around
a given reference value of the coordinate (say go). If terms of order larger than
the second one are neglected then the problem reduces to solving the Schrodinger
equation AU (L, to)/0t = —iHyU(t, to), where U(to, to) = I is the identity operator,
Hyg = Ho+ Vi, ,

Vi = Wo(t) + Wa(t)a + Wa)e’, (6a)

and
Wo = Viga, RO - VOlao, R0 + (1/2)V Plao, RO
Wi = VOgo, R()] = VP lgo, R()go,
wy(t) = V®lao, RO, (6b)
with V(®)(q, R) = 0"V (g, R)/8q". We omit Wo(t) as well as P2(t)/2p in the
treatment below because they contribute only to a phase factor which does not
appear in the transition probabilities. )

Although the differential equation for the time evolution operator is simpler in
the Schrodinger picture than in the interaction one, the latter is preferable from the
computational point of view [2, 5]. The time-evolution operator in the interaction
picture satisfies the differential equation

QUL (L, to)/0t = —iH Ur(t, o), Ur(to,to) =1, (M

where Uy = UFU, Uo = exp(—iTHop), and 7=1— to. The Hamiltonian in this
picture, namely, Hy = Qm_, Vi Us, is found to be

|

Hr=

[A@)(a*)? + A°(0a + BO(@ a+ aa')] + Ca+ O M, 8)

[S-4

where + stands for adjoint and * for complex conjugation, @ = 2-1/2(q + ip)
and at = 2-1/%(q — ip) are the annihilation and creation operators, respectively,
A= Wae27/2, B=W;y/2, and C= 9-12W e,

Since Hj belongs to the sixth-dimensional Lie algebra spanned by {I,a,a",
a?,(at)? ata+ aa*}, the time-evolution operator Uy can be written as a product
of simple exponential operators [13] which greatly facilitates the calculation of
transition probabilities [2-4] and other physical properties of the system. However,
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i order to obtam transition probabilities, which in terms of Uy read P -
[{ru] )17, it is convenient to proceed in a different way that avoids m?.:_m:%.\.:wsl
particular form and yields simple and computationally advantageous Eo:‘:m:ow,“
relations for the matrix elements (mUr|n) [5, 14]. o

The method is based on the equations of motion
dQ/dt = U;F{a0/adt + i[H;,O1}Ur,

where O = QWQQT In particular, for the annihilation and creation operators it is
found that
@ = Go(t) + G_(t)a+ G(t)at,
and
at = Cy(t) + GL()a + G2 (t)a*

where the complex-valued functions of time (io, (' and (74 are solutions of the
differential equations

dGio/dt = —i(CGo + AGy + D7), (9a)
dG_/dt = —i(CG- + GY), (95)
dG4/dt = —i(CGy + AG-), (9¢)

with the initial conditions Go(to) = G+(to) =0, and G_(to) = L.

Since all; = Uya and atUp+U(@)*, it follows from the form of & and (a)*
and the well-known properties of the annihilation and creation operators that [5
14] ,

(njUrlm + 1) GV m 4+ D)"YV {=Gy(n|Urim) + n'/2(n — 1|Ur|m)

»m...w_s:u?_S_s -1}, : (10a)
(n+ 1UAm) = GT{(n+ 1)~Y2{GoGr — GLGR){(n|UrIm)
+Gen' 2 (n — 1|Uf|m) + m'2(n|Ur|m - 1)}. (100)

These recurrence relations are easily programmed and yield all the ratios rm,a =
(n]Ur|m)/{0]U/|0) hierarchically starting fromm = n = 0. The recurrence relations
(10) do not give us the transition amplitude (0]U;]0). In order to calculate Pm—n =
[Pm.n|*Po—o we need Po_o = |(0}U;0)|? which can be obtained either directly [14]
M_._?oB the completeness relation that can be rewritten Po_g = (rgo+rio+-- .VL
o ;

When (¥, {¢|¥,,) deviates largely from zero during the collision, results ob-
tained from the semiclassical algebraic treatment with V = V(0, R) and go = 0 are
not sufficiently accurate. In such cases it is convenient to expand the interaction
potential around go = u(t) = (m|U+qU|m) [8] and to use the effective potential
Y = (m|U+VgU|m), which is the harmonic approximation to Eq. (4). The al-
gebraic procedure proposed in this paper is particularly useful because it allows
writing all the equations in terms of the functions G. For instance

u(t) = (mU*qU|m) = 2'/*Re(e™"" Go), (11)
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where Re stands for real part of a complex number. Besides, the effective potential

for the classical trajectory beconies
V(R 1) = V{u(t), K] + (1/2)V O {u(t), K)a* (12a)

where

a2

(m|Ut(q - u)2U |m)
{(m+ 1/2D2Re(e”¥7G_G4) +|G-* + 1G 412 + 2[Re(e™" Go))? } Y2 (12

i1

which shows that classical equations of motion (2) and the quanturn-mechanical
ones (9) are to be integrated simultaneously from lo to {,. The initial relative
momentum is given by Eq. (5) and the final values of Go, G4 and (i are used to
obtain the transition probabilities through the recurrence relations (10).

From now the semiclassical algebraic procedures based on the choices (V =
V(0,R), go=0)and (V= (mlU+VgU|m), qo=u)are called methods A and B
respectively. The quantities A, C and D in (9) are functions of ¢o. In method B
go = u depends on G 50 that (9) is a set of nonlinear coupled differential equations
which one integrates using standard numerical algorithms.

The total energy defined according to the harmonic approximation, Exy =
(mlUYHyUIm) + P?/(2p) is not conserved during the collision. In fact since
3P/t = —0V/OR it follows that

dEq /dt = (dR/d1) %m. ?:v:ﬂsg + VO(R, 0)(«? + %L (13a)

for method A and

dEg/dt = (m|U+(8Vy [0t)U|m) + (P/p)oP/ot

(m|U*(8Vy [OR)U|m)OR] Ot + (m|U*(8Ve [0u)U [m)du/dl
+(P/p)OP[ot

(OV/OR + OP[Ot)P[p + (m|U* (0Vy [0u)U|m)du/dt

(m|U*(8Vy [8u)U |m)du/dt

(1/2)(du/dt) VR, u)a™(t) (136)

il

o

for method B. One can convince oneself that the magnitude of the change of En
with time is a measure of the inaccuracy of the harmonic approximation which
requires that both V3 and o2 be small. It is worth mentioning that even though
dEy /dt may be large for certain ¢ values, the difference Eg(oc) — Eg(—00) is
frequently small because R and u values are nearly symmetric around the turning
point t., where P(t.) =0.

Because of the symmetry of the collision process about the turning point i,
one expects that Pm_n = Pp_m. This equality, often called detailed balance, is
satisfied by method A because R(t. — t) = R(t. +1t) but not by method B because
as V is given by Eq. (12) the relative trajectory is no longer symmetric around
t., and, which is more important, because different semiclassical Hamiltonian are
used in the calculation of P _.n and Pn_.m (notice that V{g, R(t)] depends on the
initial vibrational state). Therefore, in the latter case the average of Pm_, and
Ppem 18 considered to be the actual transition probability.
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Transition probabilities obtained by methods A and B and exact results {ro
The model parameters are o« = 0.114, p = 1/2 for system [ and a = 0.2973,
system 11. E is the total energy in units of the ground-state vibrational energy w/2. The

Table 1

number in brackets is the negative power of ten.

m ref. {12].
u=>5/4 for

System E Transition | Exact | Method A | Method B
I 76 51 | 4306) | 5.12(5) | 4.25(5)
02 | 128(11) | 1.96(11) | 1.34(11)
8.8 0—1 2.03(4) 2.40(4) 2.01(4)
1 —2 2.23(5) 2.67(5) 2.20(5)
0—2 1.13(9) 1.60(9) 1.10(9)
10.0 0—1 6.58(4) | 7.81(4) 6.55(4)
1 -2 1.52(4) 1.82(4) 1.51(4)
0—2 2.51(8) 3.54(8) 2.45(8)
12.0 0—1 2.85(3) 3.35(3) 2.83(3)
1 —2 1.32(3) 1.56(3) 1.30(3)
0—2 9.43(7) 1.31(6) 9.20(7)
16.0 0—1 1.92(2) 2.21(2) 1.89(2)
1 —2 1.66(2) 1.93(2) 1.63(2)
0—2 8.12(5) 1.09(5) 7.86(5)
I 4.9455 0—1 1.12(4) 1.84(4) 1.12(4)
6.9455 0—1 2.93(3) 4.76(3) 2.92(3)
1—2 2.30(4) 3.68(4) 2.28(4)
0—2 1.69(7) 4.44(7) 1.67(7)
8.9455 0—1 1.53(2) 2.44(2) 1.53(2)
1 —2 5.97(3) 9.47(3) 5.96(3)
0—2 2.31(5) 5.94(5) 2.29(5)
16.7882 0—1 1.97(1) 2.58(1) 1.85(1)
1 -2 2.37(1) 2.95(1) 2.28(1)
0—2 1.62(2) 3.39(2) 1.62(2)

It is usually assumed that intermolecular potentials are relatively well de-
scribed by Lennard-Jones, Morse or Bucking
vibrational energy transfer is extremely sensitive to th
branch of the interaction it is customary to chose the exponential repulsive po-
tential V(q, R) = exp[—a(R — ¢)] in most calculations (1]
to test the accuracy of the harmonic approximation because of the large a
mate results available. The system is characterized by two
y « and p. Systems for which exact quantum-
e arbitrarily divided into two classes one for
[9]. Two examples, one of each
I and system 11, respectively,

of ”exact” and approxi
independent parameters, namel
mechanical calculations exist [12] can b
small and the other one for large reduced masses
class, are considered here which are called system

from now on.
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Fig. 1. Percent relative error, Yoe, for the transition probabilities 0 — 1{o), 1 — 2{D)
and 0 — 2(0) for system I(p=1/2,a= 0.114), calculated by means of methods A(- - -)

and B(—)-
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Fig. 2. The same as in Fig.1 for system II (p=5/4, a= 0.2973).

The transition probabilities calculated by means of methods A and B are com-
pared with the exact quantum-mechanical ones [12] in Table [, and the percent rel-
ative errors are shown in Figs. 1 and 2. As expected, method B gives better results
than method A and the difference is larger for the large-mass system i1 for which
the deviation of u from zero is much larger [8]. Both the results obtained by using
the complete semiclassical potential (i.e. without the harmonic approximation) 9]
and present method B are in remarkable agreement with the quantum-mechanical

423



ones, the relative error being less than 3%. However, it is preferable to use present
algebraic method because the calculation is much simpler, requiring remarkably
less computation memory and time [5]. 1t should be kept in mind that when the
whole semiclassical potential V(q, ) is used, the Schrédinger equation is solved by
expanding the wave function in the basis of states of Hy [9]. In such a case the
basis dimension required to reach convergence, and thereby the number of differen-
tial equations, is proportional to the total relative energy. On the other hand, the
number of differential equations when using the harmonic approximation remains
constant. This advantage is even more noticeable in systems with a larger number
of degrees of freedom. For instance in the case of the collision between two identical
diatomic molecules the number of open channels increases with the square of the
energy.

For all these reasons the harmonic approximation and the Lie algebraic meth-
ods discussed in this paper are most suitable for implementing improved versions
of the semiclassical approach to study translational-vibrational energy transfer in
collisions between large molecules.
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