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The highly nonlinear acoustic properties of inhomogeneous solids are connected
with defect structure. The possibility of nondestructive acoustic nonlinear
strength control is discussed. Some peculiarities of measurements of high orders
nonlinear parameters are considered.

I. INTRODUCTION

In this paper we consider the extremely high nonlinearity of some solids. There
are interesting aspects of the problem, e.g highly nonlinear properties allow us to
improve the efficiency of different types of acoustoelectronic devices. However, we
concentrate our attention on the another feature: extremely high nonlinearity of
structural inhomogeneous solids. Recently, this problem has attracted attention of
some scientific groups and it developes sufficiently fast because it is perspective in
microstructure diagnostics and consequently in strength control.

II. MOLECULAR, MIXED AND STRUCTURAL
NONLINEARITIES.

As it is well known, the molecular nonlinearities (nonlinearities of ideal crys-
tals) are caused by attractive and repulsive potential of ions in Born’s model of
dielectric solids. The values of the third order elastic modules of different crystals
are known. For the longitudinal wave the nondimensional quadratic parameters
X1 = b/a, where b is the effective modulus of third order (linear combination of
proper third order modules) and a is its second order analog. The value of X; does
not significantly exceed 10 for the majority of crystals.?

!Presented at the 13th conference on the utilization of ultrasonic methods for studying the
properties of condensed matter, Zilina, CSF R, August 1992

2For the Coulomb potential of attraction ~ r—1, this parameter has an order n (the degree of
repulsive potential decrease ~ rT).
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A.,rm m:v.mkmﬁmgm connection cause sometimes very high nonlinearity on the elastjc
mao.. Q.M:..:Emmcmnoimm:o nonlinearity has been observed in magnetics, e.g. ip
wsrmm:oam.m:o:nm (hematit [1]) and in ferrodielectrics (ferro-yttrium mmmzmn Ev
m.29 the high nonlinearity is caused by the spin-system. Under the definite no:..

mo%.:ﬂ. .«6& the generation of the second harmonic of shear wave. However, the
prohibition is weak and weak second harmonic was observed. Its amplitude mf.o,:mq
.mmvm:mm on nonuniform external tension [3]. Very important results were obtained
in [4], where it was shown that the nonlinear parameter was by 2-3 orders higher in

a high <m~.:m of u.D. for instance rocks (IX1] = 10?) [5], custed iron (X1 =3-102)
and especially different types of concretes (1X1] exceed 103) 6]..

III. STRUCTURAL NONLINEARITY. SOME QUESTIONS OF
STATISTICAL THEORY OF CRUSHING. NONLINEAR,
PARAMETERS - STRENGTH CORRELATION (SIMPLEST
MODEL). ABSOLUTE AND RELATIVE STRENGTH.

The different scale defects, from the point to the macrocraks violate locally
the Hook law and, consequently, they cause the local nonlinearities. As a rule
sound 4&5?:@? 1s much less than the typical size of the defect. An ::vo;m:m
n.oanmvsow of nonlinear scattering, namely the scattering with harmonics genera-
tron, was introduced by Sutin [7] from the point of general nonlinear wave theory.

o = Qo mu\w_ A:
where Gy = poc2/? i i i
| > U0 = pocy'”, po is the density of ball material, and ¢ is the sound velocity
in solid media of the same material. If the initja] deformation of grain media is g,
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then the expansion in the neighbourhood of g4 reads

7/G = (e = £0) + (e - o) + ﬁﬁm ) @)

where G = uQcme\w is the elastic modulus of grain media. Here, the sound
velocity ¢ = ¢o (9e9/(72))!/* may be much less than in solid ones. It is known for
example that the sound velocity in the sand near the earth surface (at the depth of
approximately two meters) is close to 500 m/s. As the sound velocity in solid quartz
is 5000 m/s the initial deformation is 10~4at that depth ¢y. From (2) we obtain
the nonlinear parameter IX1] = 2.5 x -10%. The value ~ 103 for underground layer
of earth was obtained many times in experimental conditions in nonlinear coherent
seismology [8]. We shall use later the nonlinear cubic parameter X; X3. From (2)
we can see:
1 1

X» = m ’ km S WMIQ A“wv
Hertz media nonlinear parameters at small €9 can be very high. Contact nonlinear-
ity may be observed not only in sandy media, as it was discovered in polycrystalline
metal [9]. There is a lot of papers in which artificial Hertz media are used to ob-
taine high nonlinearity. The above results are applied strictly only to the media of
equal radius of grain. An interesting investigation of contact surface nonlinearity
with random Hertz contacts distribution (the random radii are partly free) was
done in [10]. The correlation between the nonlinear parameters and the medial
initial deformation ¢, was approximately governed by (3) therein. This allows
us to generalize (3) with some part of confidence on media with random contact
distribution.

Another type of high local nonlinearity arises near the microcraks. If crack
thickness in equilibrium is less than the displacement amplitude then the crack is a
different modulus object. The local modulus becomes equal to a continuous media
one after the crack slams. But in the phase of stretching the effective modulus is
much less. Such modulus difference causes high values of X; and Xs. Sometimes
this nonlinearity is called clapping.

One should say some words about bubbles media. Experimental investigation
[4] showed the growth of the nonlinear parameter of such media especially in the
region of low bubble concentration. Liquid bubble media have been investigated
more accurately than the solid ones. The increase of the nonlinear parameter by
two-three orders was obtained in liquid-air system. Nonlinearity of porous solids
was theoretically investigated in [11], where it was shown that high nonlinearity
may be expected in rubberlike porous solids (with small shear modulus).

The dislocation structure also causes an additional nonlinearity [3,12], see
well known effect of amplitude dependent internal friction for instance :

The above types of nonlinearities contribute to full nonlinearity. The matrix
nonlinearity is much less than that one caused by defects in solids with a lot of
defects. From the other point of view the above types of defects are the origin
of destroying processes. This qualitative assumnption may be the starting point to
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a solution of the very important technical problem of nonlinear acoustic strength
prediction [13,14].

The strength problem has laid long ago in the focus of attention of mechanics,
physicists and other specialists of corresponding technica) disciplines. The problem

treatment, developed in (15] in which the probability of local dangerous defects

concentration was calculated in another correct way.

Let us consider the following problem: there are N equal noninteracting defects
in volume V. Their average concentration is n — N/V. We have to find the
probability that m from N defects are located in a little volume A € V, so that
the local concentration of defects n,, = m/A becomes critical for a given external
stress p. Connection of critical concentration with rupture stress demands rupture
mechanics notions. It was shown by Griffits [16] from energetic consideration that
pr/2 = const (p is rupture stress) for the crack of dimension 7. By the way, pa®/?
= const for liquid rupture on the bubble (a is the initial bubble radius). Suppose
pT’ = const (s = 1/2+3/2). Then by modelling of the critical defects concentration
by microcracks or micropores we can obtain the rupture probability in the form

|l Bnﬂ~\ ch ..w\u M\h
W)= 22 (2) " exp(—po/re) (@

where p oc Aaﬁsm\mw B = In(n, /n)=1: h is the characteristic dimension of the
defect. The function W(p) is defined only for those p, where Wp)<lorp< Rpg,
where R is the nondimensional rupture limit obtained from the equation W(p) = 1.
The approximate solution of the last equation is

R~ In(n,/n) - 17°/?
- In(n,, «\\J\w,q_.v

It is obvious that solution (5) is correct for large N if nV > 1 and if there is
a sufficiently large difference between the critical concentration and the average
one. The functions R(n) are shown in Fig. 1fors =1/2 and 5 = 3/2. The
dotted line shows the intervals where the solution (5) is not fulfilled. Logarithmical
dependence of strength on the average concentration of defects gives us the slow
strength decrease, too. Probably it is due to the leaving out of the collective
defects interaction, the reproduction of which rises in the process of the tension.
This statistical model needs further improvement.

)
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Fig. 1. Dependence on nondimensional rupture strength from middle concentration de-

fects.

One can suppose the nonlinear parameters X; and X, to vm proportional to
n in the first approximation and for low initial defect nozomzr.wﬂonu >=o§.o~ type
of strength decrease with defects concentration can be shown within nrw m::m_mmn
model of nonlinear solids in terms of nonlinear parameters. Further 835@3903
do not claim to be rigorous [13,14], but they give us a simple connection voaiwms
the strength and nonlinear parameters. Let us suppose the stress-strain connection

o(€) has the form
o(€)/M =€ + X1€% + X1 Xa6%. (6)

Here M is the linear elastic modulus for the strain-compression mmm.o:,:ws.oz m..~.n is
the simplest model of a nonlinear elastic solid with Square and cubic :o:__bmm_.:mmm.
In this model the critical deformations can be ogw.Ewm #oE the square equation
o'(€) = 0 for brittle crushing (and the Ewmsn_@ rE;m in other cases). wmnm:mm
X1 < 0 and X, is possitive, the quadratic equation has two roots, £; < 0 an
€2 > 0. The compressional limit is Ri(X;, X;3) = o{e1)/M < 0 and the mns:w
one is Ry(Xy,X2) = a(e2)/M > 0. It can be shown n_._wp |R1} & Wm. ,Ewm genera.
solution is too bulky. In the limit case of ”steady nonlinear solids 1X1] = X,

Ry —1/[Xial; Ry 5/27|X, 4. ™

For the "strongly cubic solids” X, > |X,| and
1

2
NW— = Illluw ‘Itlw_\/\m _\ﬂw wxw ’
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Surface topographies R, (X1, X,) and Ry(X1, X3) are shown in Fig. 2. One can see
that the growth of IX1| and X, causes a decrease of the limits of strength. The
small raise of compressional limit |Ry| has probably not taken place in reality for
“strongly quadratic solid” (|X;| > X3) for [X;| > 102, ‘No real solid is knowp
in this region. Onpe can obtain the physical meaning of X, from limits Xy — 0,
R — —~ o0 and X2 — 0(c0), |R1] — R2. The first one means that the solid has 5
strong side support (nonlinear Poisson coefficient ~ 0), the second one - that the
support is weak (nonlinear Poisson coefficient ~ 0,5). The conclusion about the
strength decrease with nonlinearity parameters growth is correlated with the above
results of the statistical theory of strength.
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Fig. 2. Topography (the line of equal strength) of the surface a) tensile strength
|R:1 (X1 X,)| and b) rupture strength Ry(X;X2).

As an Aﬁmm::;m let us apply Eq. (7) to the Hertz media (2). There are two
roots for critical deformation and we obtain the strength limits

.mw_ = AA = @vmc“ mwm = |m\M.NAA = @vﬁ.c va

tensile strength. As eq increases, the strength increases too, but the limit Ry is not
definite because this model does not, include the critical tension of each grain.

Essentialy the simplest nonlinear solid model (6) is far from real solids with
their rheological and hysteresis properties. Acoustic investigations of mechanical
properties up to the level of deformation 10~ = 10~5 can not reflect the processes
developed near the crushing region. Acoustic emission results show that in this
region a great number of new defects is generated, the dislocations move and co-
agulate, microcracks grow up and join together to form macrocracks and so on.
All theses chaotic processes have only an indirect connection with original defect
structure. From this point of view one can not hope to obtain the absolute value of
strength from nonlinear data. An exceptional case perhaps is the solid with a very
bad original structure of defects (e.g. a concrete in which the strength obtained by
the nonlinear method is near the standard one [14,15]) ). In other cases, one may
expect a too high limits.

However, using the fact that the high order moduli are connected with initial
defects structure and that those are correlated with embryonic stucture of crush-
ing processes one may expect to obtain relative strength of two equal samples from
acoustic data. It is not nhecessary to emphasise that this problem is sometimes very
important in microstructure defectoscopy and in material tiredness problems. Non-
linear acoustic control may be sometimes much more sensitive than usual methods
of linear defectoscopy.

IV. SOME PECULIARITIES OF HIGH ORDER MODULUS
MEASUREMENT

This communication would not be complete if we do not briefly mention the
experimental methods of high orders modulus determination. As these methods
have been developed long ago, it is not hecessary to consider the problem in detajl.

The first method consists of determination of static stress dependence on the
sound velocity. Measured nonlinear parameter depends on the wave type, orienta-
tion and type of external tension. In the case of quadratic nonlinearity, velocity is
a linear function of a tension. Deviation from linearity at upper range of tension
is caused by higher orders of nonlinearity. The drawbacks of this method are in
the low tension region, where dislocation and internal stresses reconstruction be-
gins and where an irregular deviation from linearity and hysteresis effects may be
observed. In the high tension region there are possible irreversible effects caused
by destroying the original internal structure.

This method has been further developed into the modulation method, in which
the static tension is changed by low-frequency sound. Sound-sound interaction
causes an appearance of side-band components; index of the nonlinearity is pro-
portional to the amplitude of these spectrum components at low modulation.

The quadratic nonlinear parameter can be determined from the amplitude of
the second harmonic. The disadvantage of the modulation method is that the
sound field absolute measurement is necessary to obtain the absolute value of Xy.
This makes these experiments too complicated. To avoid the absolute measurement
one should use a relative one.,
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measurements require a sufficient accuracy. As an example the amplitude of second
harmonics is by two-four orders lower at the strain in region ~ 10~¢ + 10~5, Hou,.

of the sqlid sample (as an acoustic detection of a modulated signal by one of the
resonances of the rod [17] ) for a weak signal.

The problem of determination of cubjc nonlinearity is more complicated be.
cause the effects are very small and they are subjected to the influence of different
interferring factors. This is areason why only a few data of the forth order modulyg
are known till now. [t is necessary to mention also the example, where the incor.

However, the change of resonant frequency takes Place not only because there are
four- order moduli, but also because powerful sound heats the resonator and the
changes of the temperature cause the shift the resonance frequency. For the ma-
Jority of solids nonlinear and temperature frequency changes occur on the same
side of the linear resonant frequency. Separation of these two effects is possible
thanks to the fact that thermal effects are much slower than the nonlinear ones,
The nonlinear effect due to the selfheating is interesting in itself. For example it
allows precise measurement, of heat transfer through the surface of the resonator
including the nonlinear coefficient of heat transfer at the temperature difference of
the order of some degrees of Celsius [18].

Phase methods are very useful for the measuring changes of the sound velocity
amplitude. This method was used long ago [19] in the case of liquids, where one

decreases the strength, in qualitative agreement with (8). However R, ~ ~\AD€VH\,»
(8) and decreasing of R, must be sharper than the average experimental data. The
scattering of experimental data is incidentally large. The Ayp-method is near the
Tesonant one and has the same troubles in an idea sense.

To conclude, let us mention that the nonlinear acoustodiagnostics may give
us useful integral data about the microstructure of a solid. The methods, how to
obtain information about strength from these data are very perspective. I hope
that the estimation of relative strength can be obtained. It is necessary to continue
the investigation in this direction. We can expect to hear about the useful technical
solutions of some important problems.
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Fig. 3. Correlation of absolute value of tensile strength o, of two nozn._.mom E.E.rm B40 (%)
and B45 (-) (obtained by crushing of samples on the n_mm:ofzm._:wnr_:mv with n.rm phase
change Ay (obtained at the ultrasound of 40 kHz whose amplitude has been increased
ten times). The dotted line is oy ~ 1/(2)"/2.

REFERENCES

[1] V.I. Ojogin, V.L. Preobragenski: JEFT (in Russian), 73 (1977), 988.

(2] LK. Zarembo , S.N. Karpachev, S.Sh. Gendelev : Pisia in JTP (in Rus-
sian), 9 (1983), 502.

{3] A.A. Gedroiz , LK. Zarembo » V.A. Krasilnikov : Doklady AN USSR (in
Russian), 150 (1963), 515.

[4] G.A. Drujinin, V.M. Krjachko s G.A. Ostroumov, AS. Tokman : Prik-
ladnaja akustika (in Russian), Taganrog 2 (1976), 121.

[5) V.N. Bakulin, A.G. Protosena: Doklady AN USSR (in Russian), 263 (1982),
314.

[6] LE. Sholnik: The rising up efficiency ultrasonic control of concrete quality, MISI
(in Russian), 1985,

[7] A.-M. Sutin : Nonlinear scattering acoustic beams in nonlinear media. Diss. d-ra

phis.-math.nauk, Gorky, IPP AN USSR, 1989.

[8] The problems of nonlinear seismology (ed. by A.V. Nilolaev, Galkin), Moscow,
1987.

{9] V.E. Nazarov : Phiz. Met. and metallovedenie (in Russian), 3 (1991), 172.

[10}) A.V. Panasuk : Propagation of elastic vibrations in systems with special types
of nonlinearity. Diss. d-ra phis.-math.nauk, Moskow, Acoustic inst., 1992.

365




(1]
(12]
{13]

(14]
(18]

(16]
[17]

(18]

(19]

366

L.A. Ostrovskij . Akust.J. (in Russian), 34 (1988), 908.
A. Hikata, B.B. Chick, C. Elbaum - J.Appl.Phys. 36 (1965), 229.

LK. Zarembo » V.A. Krasilnikov » LE. Shkolnik : Defectoscopia (in Rus-
stan) 10 (1989), 16.

LK. Zarembo y VAA. Krasilnikov » LE. Shkolnik : Problemi prochnosti (in
Russian) 11 (1989), 86.

K.L. Zarembo » LK. Zarembo - Vestnik Mos. Universiteta, ser. fiz.-astr. (in
Russian), 32 (1991), 82.

AA. Griffits : Phys. Trans. Roy. Soc. of London, 2214 (1921), 163.

LK. Zarembo s V.A. Krasilnikov » V.N. Sluth, O.Yu. m:nrw~m<mw&m“

Acous. J. (in Russian) 12 (1966), 486; L.K. Zarembo » 0.Yu. Serdolskaja :
Vestnik Mos, Universiteta, ser. fiz.-astr. (in Russian) 1 (1970), 62;

LK. Zarembo » V.B. Piotuch » §.5. Sejocan : Acous, J. (in Russian), 19
(1973), 778,

LK. Zarembo » EK. Guseva,S.V. Titov, K.E. Toom: J. Techn. Phys. (in
Russian) 61 (1991), 141.

LK. Zarembo , V.V, mnwio;rﬁ.m-xoﬂmw : Acous. J. (in Russian) 6 (1960),
47.




