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A new modification of the Wiener process is considered generalizing previous
results of the author. In the present paper, a multiplicative stochastic process
is analyzed combining two processes: the Wiener process defined by a diffusion
constant [} and a general Markovian random train of diffusion-enhancing delta-
pulses of strength M. The waiting time 7 between the M-pulses is defined by
an arbitrary probability ®(r), whilst in author’s former paper, ¢(r) was cho-
sen rather specially (in the Poissor form). The conditional probability density
and three forms of the evolution equation for the process are derived. Green’s
function of the evolution equation is represented as a functional integral gener-
alizing the Feynman-Kac integral. Possible applications are discussed, including
the dechannelling kinetics of high-energy particles in crystals.

I. INTRODUCTION

In our former paper [1], we have analyzed a modification of the Wiener process
due to a Poisson random train of diffusion-enhancing pulses. This means, if we say
it more precisely, we dealt with a multiplicative one-dimensional stochastic process
£(u), 0 < u <t , which was defined by the stochastic differential equation

£(u) = 2D(u)]'*f(u), 1)
with some fixed starting point
mAcv = Zo, va

with the standard Gaussian white-noise random function f(u) defined by the con-
ditions

(f(w))e =0, (f(u1)f(u2))c = 6(u1 — up), 3)
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and with a two-valued positive random function D(u) defined in a Poisson way.
Having interpreted £(u) as the Wiener process (i.e. Brownian motion) on random
sections of the time interval (0,1), we gave the following meaning to the functiop
D(u): it was defined by two randomly alternating diffusion constants, D and D,
(so that 0 < D < Dy ). In other words, we spoke of some random alternation of
the diffusive D-state and D, -state. We might equally speak of Dy -state pulses
on the D-state background. Each pulse was taken with the same duration 7, bu

the waiting time 7 between the pulses was considered as a random variable with
the Poisson probability

() = exp(~vr), v = const > . (4)
Moreover, we simplified the problem by the condition
lim D7, = M = const > (5)

for D, — oo, Tp = +0. In this case, we spoke of M-pulses (i-e. delta-function-
shaped pulses with the “strength” M ).

In the present Paper, we again deal with the process {(u) defined by egs. (1),
(2) and (3), with a two-state random sequence of the pulses of the fixed duration
7p- Even condition (5) will still be stipulated. Only in one point our present
problem is different from, and formulated more generally than, the problem solved
in our former baper: we will not confine ourselves on the special function given
by expression (4). Instead, we shall take a general function ®(7,¢;) in the role of
the probability for the waiting time 7 between the pulses. We assume that this

moving in the D-state), the function ®(7,1;) defining the probability with which
the D-state is to survive until the time.instant ¢; + 7 (when the (n + 1)-th pulse
is switched on) must be independent of pulses preceding the n-th. We require four
conditions which the functjon ®(r,1;) has to satisfy. The first three are these:

®(7,;) >0 foreach r> 0, t; >0, (6)
0%(r,t;)/0r <0 foreach 7>0, ¢ > 0, (7)
2(0,¢) = 1. (8)
The fourth is the requirement of the existence of a constant v > 0 so that
ﬁ:S exp(vr)®(1) = ¢ = const, ®(r) = &(r,0), 9)

where 0 <'¢ < 1. The last condition says, in fact, that the asymptotic behaviour
of &(r,0) for r — 0o resembles the function cexp(—vr). In the limiting case when
the function ®(r,0) is reduced to the Poisson function (4), we have ¢ = I and

condition (8) is satisfied exactly for all values of r. As the probability &(r,t;)
depends on t;, the train of the M -pulses is not stationary in the statistical sense.
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The mathematics of non-Poissonian point processes (or pulse processes) of the
kind relevant to our problem is rather old (Domb [2] ; <f. also E , Chapter 2, § 12).
Together with the function ®(r,¢;), we shall also use the function

(1) = —81In®(r,1;)/0r. (10)
Inversely,
®(r,1;) = exp|[— \ du (1)), (11)
We interpret
dPp(r,t;) = ®(r, t:)p(7)dr (12)

as the joint probability that just after a certain M-pulse is applied at an mav:.ama
time instant ¢;, the D-state lasts until the time instant Li+T w:.m .&RQSQ% s:mr_:
the time interval (¢; +7,¢; + +dr), the next M-pulse arrives ia.r the Uwo_umv:;.vm
¢(r)dr. Condition (9) implies that ¢(7) tends to some positive constant v i

T — 00. Clearly,

+o00
\ dr &, t)p(r) = 1. (13)

Eq. (1) suggests that we have to distinguish between the w<w_.mm5m () with
respect to the Gaussian white noise f(u) and the averaging {)p with respect to the
process D(u) (i.e. with respect to the pulse statistics). The total averaging is

(0 ={Opde ={{)a)p- (14)
In § 2, we calculate the fundamental probability density
P(z,t|z0,0) = ( (= - £(t)) ) (15)

under the assumption that there are no vomu&mawm S v_mw. For brevity, SM .MEM_
write P(z,t|29,0) = P(z,t|zo). However, if the initial time to becomes s :..a ,
then the function P(z,t|zo,¢o) is not equal to P(z,t- ?_.Hcv ?b_mmm the function
@(7) is reduced to some constant corresponding to a.ro Poissonian nm.mmv.mu N

We use the same diagrammatic method here as in E.. Aﬁm function Ty. _HML
is derived exactly in form of an infinite series. .me. derivation reveals oxvrom y
the functional dependence of P(z,t|zq) on the ?moﬁoc . .F § u“ we %ﬂou\_m arm:.
P(z,t|zq) satisfies the Chapman-Kolmogorov equality. This <m:mMm t M m_.o ov
property of the process {(u). In § 4, we nm:n-.:mno the o:S.:_mEam of the en v%_% T.

If the initial (probability) density A.ma E.:m to=0) is defined as an ar “ _.E.w
(non-negative) function ¥o(z), we can identify the density y(z,t) at time ¢ >
with the integral

+oc

@Aﬁ.“v = .\ QHO &VAH;_HQV\SQAHOV. Awmv

—0Q
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§ 5 is devoted to derivations of three various forms of the evolution equation f
¥(z,t). Two of these forms - the first being a functional mmm.mamsiw_ oacwﬁ‘o—.
and the second being an integro-differential equation - remind mathematicay) 53
” generalized Schrodinger equation”. It is easy to show that these equatio Y

. . L. : ; ns
equivalent. § 6 involves a brief discussion of how to Incorporate boundapy E.o

: p ; Y condj

tions into the theory. In §7, weadd a :no”m:s&-gmnmw term” !ﬂ\?\.;veﬁa ) :MM
. . )

these equations. Then the function P(z,t|z) becomes a functional of the ”poten.

tial energy” V(z,t) and must be calculated anew. We can represent the functigy
P(z,t]zo) in form of a product integral (§ 8). This is, in fact, a functiona] integra}
generalizing the concept of the Feynman-Kac integral (Feynman and Hibbg (4 ,
Kac [5], Feynman [6]). Taking an infinitesimal time increment €— 40 m:m‘zumbu. :
the function P(z, ¢+ €|zg,t) in the role of a given kernel in the integral form of
the evolution equation for ¥(z,t), we can rederive the functional differentia] form
of this equation.

In § 9, we discuss applications of our theory.

II. DERIVATION OF PROBABILITY DENSITY P(z,t|zo)
BY A DIAGRAMMATIC METHOD

We define, at first, the Gaussian probability density
Glz,t]zo) = ( 6(z - £(t)) )
so that
P(z,tlz0) = ( G(z, tlzo) ), = ( G(z, t]a0) ).
Evidently,

t

+00
G(z,t)zo) = W \ dk exp[ik(z — zg)] axvﬁlwu\mﬂ D(7)].
—o0 0

We write also the Fourier integral

+00
P(z,tlzo) = W .\ dk explik(z — zo)]p(k, t).

Then

p(k,1) = { exp[~#? \ dr D(r)] ).

We represent this function as the sum of terms corresponding to simple &?
grams depicted in Fig. 1. . : o gt
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1. The scheme of the summation over the diagrams contribating to the function
Fig. 1
p(k.)-
Each diagram spans the time interval (0,¢). The diagrams involve the propa-
lines (with the arrows indicating the time direction) and the M-pulse .&oam.
ﬂﬂawwﬂac_mam three rules for reading the diagrams. The first says that we attribute
e

the function

po(k, A1, 13} = ®(AT,75) mxil\nwbbﬂv (22)

ch propagator line of length A7 starting at 7; Ainr.:. the ms.nm:m_ Ao. t). The
ooon le says that a dot the ”coordinate” of which in the diagram is 7; con-
S.nozm _,_w _&M factor ¢(7;) exp(—kM?) to the corresponding term in the series
:_GEMEMm the function .MRFS. The third rule says that we must exhaust all
Bowwﬂ_o intermediate time instants 7; (of the dots), i.e. we must integrate over
mra:_. In this way we obtain the series, with po(k,t) = po(k,t,0),

p(k, 1) Huo?._ST+WU8A2I=»N>\D.\&? \.mﬂan_.:\&d e(mn)e(ta=1)...o(m)].
n=l 0 0 0

However, it can easily been proved that

o\mm?:.o\dﬁ_ﬂ (1) p(n1) = wﬁc\s&. o).

That is why we may write the result

t
Pk, ) = po(k ) expl | dr o(r) exp(~* M) (23)
0
or, more explicitly,
t
P = exp( [ dr p(r)[1 - exp(—k*M)] - 7Dt}
0
= exp{ln®(t)[1 — exp(—kM)] — kDt} (24)
(where we have used relation (11)). )
We rewrite once more the last expression as the sum
(=23
p(k,t) = 2(5) ) % ~In ®(t))" exp(~nk?M) (25)
n=0
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where ®(t) = ¢(¢,0).

ﬁmﬁ::::m to the Z-representation, we state that P(z,t]z) can be written as a
linear combination of ap infinite number of Gaussians .h positive coeflicients
depending on the probability &(t),

= e} H N
Pz, t|z) = ¢(t) :Muo ﬂﬁl In®(t))"I'(z — 20, 2(nM + Dr)). (26)
Here we have used the denotation
1 z?
Iz,0%) = 7—exp(—— :
(:0%) = G el 2) (27)

for the Gaussian with the dispersion (variance) o2.

III. THE MARKOV PROPERTY - THE
CHAPMAN-KOLMOGOROV IDENTITY

Let ¢; be any intermediate time instant, 0 < ¢; < ¢ .
Since

UOQP sv = EOAN..N — :vﬁoi..u :v Awmv

and

(1) = @(t — t1,11)9(11), (29)
1t is seen from formulae (23), (24) that

ﬁA&.sv ”Eﬁ\nﬂulsmvﬁ:&:v. chv

Then, after applying the convolution theorem, we arrive at the Chapman-Kolmogorov
identity
(e o]
P(z,t|zo) = \. dz, wﬁa,s_nrﬁvw?:?_a?ov (31)
—00

oxvnwmmm:m a semigroup composition and conforming the Markov character of our
multiplicative process &(u).

- Let P(z,t + €lzo,t) (for an infinitesimal time increment € > 0) be known
In advance (see § 7). Then, by dissecting the time interval (0,¢) on N equal

subintervals and by applying identity (31) N —1 times, we get the product-integral
representation of P(z,t)zo):

o0 oo e o]
P(z,t|zg) = \QHZL \ms?:u:.,\ dz,
—o0 -0o0 ~00

Pz, Nelzy_y, (N — 1)e)...P(z2, 2¢|zy, €)P(zy,lzy) (32)
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where e'= {/N. The multiple integral (32) becomes a functional integral if N — oo |

It should be pointed out that there would not be any essential hindrance to
introduce a’special mathematical measure for this functional integral. This measure
would be dependent on the function @(7) and might be regarded as a generalization
of the well-known Wiener measure (Yeh [7], Hida [8]).

IV.CUMULANTS OF THE END POINT z

Owing to the simplicity of the definition of our multiplicative stochastic process
£(u), we can derive all its correlation functions (E(w1)€(uz) .. .&(un)). Here we will
focus attention on the end point £(t) = = which is a single random variable. We
shall calculate all its cumulants ¢n(t). (The cumulants are linear combinations of
the statistical moments (z™), m=1,...,n.)

When reversing the Fourier transformation (20),

p(k,t) = \ dz exp(—ikz)P(z,1|0), (33)

~o0
we see that
p(k,t) = (exp(—ikz)). (34)
The cumulant cp(t) is defined by the formula

2 0" In(exp(—ikz))
%k: k=0

ca(t)y= ¢ (35)
If we put expression (24) here, we find that all cumulants with odd indices are
equal to zero. The first non-zero cumulant is:

c2(t) = 2[-M In ®(t) + Dt). (36)
The higher-order non-zero cumulants are:
can(t) = —(2n — 1)!' (2M)" In B(t) (37)

(n=2,3,..)), where (2n ~ 1)l = (2n—-1)(2n-3)...3.1.

Formulae (36), (37) disclose that the time dependence of the cumulants is
modelled by the waiting probability ®(r) . Clearly, 0 < $(7) < 1 and &(r) -0
for T — 00. Let 7. be a characteristic waiting time, chosen with respect to condi-
tion (9), allowing to discriminate whether the function ®(7) is already resembling
(if 7e < 1), or not yet resembling (if 0 < 7 < 7, ), the exponential cexp(—vr).
Obviously, ¢(r) may be approximated by the constant v for r 3> .. We adopt a
very natural definition of 7,: we identify it with the average value () of the waiting
time,

(r) = \ dr r8(r)p(r) = \ dr (r). (38)
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For values of the time ¢ less than (7), the multiplicative process &(u) considered ip
the present paper is markedly distinct from the Poisson-modified process considered
in our former paper [1]. For much longer times, on the other hand, all specific
features resulting from the non-constancy of the function ®(7) are lost. In the
asymptotic approach, for { > (7}, we may write down the former results 1] :

ca(t) = 2(vM + D), (39)

eat) = (2n — ) (2M)"wt, n = 2,3,. ... (40)

Therefore, for any Wiener process £(u) modified by any non-Poissonian (but Markov)
random train of the diffusion-enhancing M-pulses, the Poissonian modification does
prove to be a good long-time approximation.

V. EVOLUTION EQUATION FOR THE GENERAL PROBABILITY
DENSITY

In order to construct the evolution equation for the general probability density
¥(z,1) (see eq. (16)), we formulate, at first, the evolution equation for the function

p(k,t). When putting together formula (24) and (34), we can at once state the
validity of the equations

In (exp(—ikz)) = .\.%. e(r)exp(-Mk?) - 1] - Dtk2, | (41)
0
%m_u p(k,t) = (1) [exp(~Mk?) — 1] — Dk?. (42)

(Here we have taken k as a constant.) Using egs. (41), (42), we arrive at the
equation

%m,c = TEQUT;Q + \ dr [p(t) ~ @(7)].lexp(~ME?) — 1]}p(k, ¢). (43)
0
Note that
Jar o0 - o= [ar 120 (44)
o 0

Now we will show that the evolution equation for ¢(z,t) can be written in three
forms: in the functional differential form (which we call the cumulant-expansion
form), in the integro-differential form and, finally, in the fully integral form with
a kernel which we can give in advance. Actually, the last form is nothing but the
integral equation common in the theory of propagators (Feynman 1948, [90)-
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5.1. The cumulant - expansion form

According to the definition of the cumulants c,(t) we write the series

_iaiu;avvu Mou W%TS‘.. ?s

After inserting expressions (36), (37) into it, we obtain the equality

In (exp(—ikz)) = ~lnd(t) S W”LM ~ Dt&?

n=1

so that, respecting relation (11), we may write

t

In (exp(—ikz)) =t W\mﬁ o(7) [exp(—Mk?) - 1] - Dk? } . (46)
0

Thus the final form of eq. (43) for p(k,t) is
8D — {pte) lexp(~MA?) 1] - DR}, ). (47)

Now we must realize the transition from the k-representation to the z-representation.
To do so we may replace p(k,t) by ¥(z,t) and the variable k by the operator
—19/dz. So we get the equation

The operator exp(M9?/0z?) has to be understood as the series:

o2 0 n §2n
axawuvuoﬂ%ﬂ

n=

(49)

The infinite number of the derivatives §%"/8z>" in eq. ?mv means that we have
obtained in fact a functional differential equation.

5.2. The integro - differential form

For the Fourier original P(z,t|zg) to p(k,t) , we obtain directly, :&:m the
convolution theorem, the equation

+o0
dP(z, tzo) = () .\ ma;:a - HJ, 2M) - 5(z - a.: Nu?m.“_aov

EY
82 P(z, t|zo) -

+ DR
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Similarly,

=i T, \ \
) \& (M —2',200) — 8z - 2 y(a' iy + pZEA ()

oz?

- 00

(See the denotation for the Gaussian I'(z, 02), formula (27).)

5.3. The integral form

A
xrmﬂmn rew -ﬂ=~m Oﬂ‘ N@v S-ﬂr N.=w —-~ﬁ~m~ TMEOR—O—# u\n H_ &o :—MROPQ O ﬂr _.A n
Yy OAN v ﬁ Ah 1 ﬁv e DTHW—E ﬂ—ﬂﬁ ﬂﬂﬂW&—OE A v

+00
¥z, 1) = \ dzq P(z — 20,110, to)(zo, to) (52)

mlw-.h“ﬁ Vn_ﬁa > 0. What js _.Eosﬁ a priori here is the kernel P(z — 20,10,t0) =

».lra ?h”oamvom N‘MM H?M Vmﬁ“—.&mﬂw (26)) and the initial function ¥(z,0) = ﬁo?_v ?nm
L WiT,t0) 1t tg > 0 ). We shall resume eq. (52) j i i

will be explained within a more general mmwBoso_.Mn.m (5% 32§ 8 whors mesning

VI. A NOTE ON BOUNDARY CONDITIONS

.. Am.mwr“o “M_ Mm v«oﬁumwaw (or if there are two boundaries) we may still consider
conditionsy. We ~” e ) mn we must respect a boundary condition (or boundary
- Am: . wwn ake E»w wnnoE;.. e.g., an .womo%mnm or reflecting boundary.
e m ¢ m certain cautiousness is needed in interpreting the integral term.

cidate this, let us consider the problem with one absorbing boundary, z = 0

for the process ¢(u) running on the half-axis z > 0 . Using the function .

Peo (2, t]z0) = &(2) MU %AI In®())"I'(z - 2o, 2(nM + Dt)) | (53)

(the solution for the free i
Process without any confinement), we can easi
t oces il
the solution to eq. (50) satisfying the conditions . Y construct

P(z,0]|z0) = 6(z - zq), (54)
P(0,t|zq) = 0. (55)

Indeed,
P(z,t|zo) = P (z, t|zo) — Poo(z,t| ~ z0) for z > 0. (56)

MWmnnocaﬂo. also zp > 0. If the boundary z = 0 were reflecting, the sign minus
n i co. __.a .M. of (56) would be replaced by plus. This result clearly reminds the
possibility to use the well known method of images in problems with boundaries.)
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From the point of view of physics, the solution P(z,t|zg) should vanish tor
z < 0. Nevertheless, when inserting the function P(z,t{zo) given by formula (56)
into eq. (50), we have to use its analytical continuation in the variable z, i.e. not
the solution with the zero value for z < 0. This follows from the stochastic equation

0*G(z, t|zo)

= GQV oz2

0G(z, t|z0)
i

and from its solution
G(z,t]z0) = Goo(2, t|z0) — Goo(z, | — z0)

satisfying the same conditions as those stipulated for the pulse-averaged Green’s
function P(z,t|zq) above (conditions (54), (55) ). As Guo(z,t|20), Goo(z,t] — o)
are defined as the functions due to the free diffusion from two sources, their Fourier
components are equal and their pulse-averaging (cf. definition (18)), which may be
done separately, is also equal. But we must stress it here that if the convolution
theorem is to be applied separately with the functions G (z,t|z0), Goo(z, t| — za),
in order to derive the integral term in eq. (50), they have to be taken as analytical
functions along the whole z-axis. Otherwise, if we defined already the function
G(z,t|zo) with the cut-off for z < 0, we should obtain another integral term in
eq. (50) .

As regards the integral equation (52), its formal validity is independent of
absence or presence of any boundary condition(s). Of course, the boundary con-
dition(s) must duly be taken into account in determining the kernel P(z, t|zo,10)
which will be different from case to case.

VIL. GENERALIZED EVOLUTION EQUATION RESPECTING
THE POSSIBILITY OF ANNIHILATION AND/OR GENERATION

It is simple to consider the Brownian motion with a certain kind of annihilation.
Let Vy(z,t)dzdt be the probability that a Brownian particle, finding itself in the
interval (z, z+dz), may be removed, or shorn of its motion, during the time interval
(t,t + dt). The problem is to calculate the density P(z,t|zq,to) of the probability
that the particle, finding itself in point z, is still moving at time ¢t > g, provided
that its position at time ¢y was zg.

Similarly, we can discuss a situation when there is a large amount of equal
diffusing particles not interfering with one another, each particle itself moving as
the Brownian one. Then the problem is to calculate the evolution of their density
¥(z,1) in time. In this case, we may even admit the possibility of their generation
with a rate V;(z,t). Generation of conduction electrons diffusing in an intrinsic
semiconductor is a good example: it can be produced by light (with photons of
energy greater than the forbidden gap of the semiconductor).

That is why it is reasonable to define the rate function

V(z,t) = Vo(z,t) — Vi(z, 1) (57

and to speak, in accordance with its sign, of the (prevailing) annihilation if

311



V(z,t) > 0 or generation if V(z,t) < 0. Then we can write down the equations

(z
.ﬁs = o) Ezfmlm-:%_:
% y(x
+ DDy ya (58)
m ﬂﬁu~ o0 ) , . , .
T = o) [ 4 (=2 200) - o(e = ot
8¥(z,t
+ G vy, (&%)

mmumwmmum.nm egs. (48) and (51), respectively.
The integral equation (52) remains unchanged but we have to emphasize that
the kernel P is a functional of the rate function V(z, t), so we write

ﬁAﬁqsv = .\ dzg wﬁ—\Am.:vaH_ n_Ho_ “ov .EAHP uev Amov

-00
where —00 < ¢ < 00, 0 St <u<t In§ 8, we give a construction of the kernel

of eq. 38 Note that only in case of a time-independent rate function V(z), we
may write:

Piviewn(z,tizo, to) = Py (euy(z, t — to|zo). (61)

VIII. THE FUNCTIONAL-INTEGRAL REPRESENTATION OF
THE GREEN FUNCTION P

~.u order to prove the equivalence of €q. (60) with egs. (58) and (59), we make
the difference t — o = ¢ infinitesimal. So we write down eq. (60) in the form

Y(z, t+e) = \ 4§ Py (z,0y(z,t +elz + €, O d(z+¢1), (62)

Zo = z + &, using the kernel defined by the expression

Pveoyzt+elz+6,1) = expl-ep(t)) [I(¢, 2D¢) + ep(t)T(€, 2M)]
.exp[—eV(z,t)]. (63)

We may employ the developments

0Y(z,1)
57 e

Uz, t+€) = P(z,1) + (64)
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weten=Y S THED e (65)

m=0
After setting expressions (63), (65) into the integral in eq. (62) and performing
the {-integration, we obtain the r.h.s. of eq. (62) as the following function of the
variable e:

9o 0+ e { oOexp(M ) 1) e, ) + DALY Ve 0UE0 )+

By equalizing the coefficients at ¢ in this function and in the r.h.s. of (64), we
obtain exactly the functional differential equation (58). Eq. (59) is its equivalent
because of the identity

exp(M8?/9z?) ¥(z, 1) = \ dz' Tz ~ ', 2M) ¥(z', 1) (66)

The short-time propagator (63) may be used repeatedly according to for-
mula (32) . When taking ¢ = t/N, N — oo, we can construct - for any rate
function V'(€, 7) - the functional integral

i

Py ez, t|ze,0) = QGT\%. o(7)]

"
N-1 <%
II \ “d5[0 (41 — &5, 2De) + ep(je) T(E 41 — &, 2M)]. exp[~€V (&, je)]
=8 %
80 ~ z0) (67)

where 5 = z. (The points z, 2o and the time ¢ > 0 are fixed but the variables £, 7
are running: —00 < £ < 00,0 < T < t.) ‘

Note that if o(7) = 0 then this functional integral is nothing but the well-
known Feynman-Kac integral ([9], [5]). Actually, the same statement can be proved
even if M — +0. Then we may write:

L(&41 — &, 2D¢) + ep(je) T(€j41 — &,2M) —
T(€+1 = &5, 2De) {1+ ep(ie) 6(41 — &0 (& 41 - &, 2De)]" 1)
2 T'(§41 — &5, 2D¢) exp[+ep(je)]

and

N-1 !

HH explep(je)] — mxvﬁ\ dr o(7)].

i=1 0
Thus the factor standing in front of the multiple integral (67) is accurately can-
celled-out in the limiting case when M — +0 and we have again obtained the
Feynman-Kac integral (with a general "potential energy” V(€,7)) . The functional
integral (67), valid for any M > 0, is its natural generalization.
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IX. CONCLUDING REMARKS ABOUT POSSIBLE
APPLICATIONS

The theory of the multiplicative stochastic processes described in the present
paper (theory of the Wiener processes modified by random diffusion-enhancijp
very short-lasting, pulses) can yield well motivated applications. &

O.:a of them is connected with the dechannelling kinetics of relativistic elec-
.:9.5 in n.wzmom_m (Laskin [10]). If a raonochromatic beam of high-energy electrons
is almed into an "easy direction” in a crystal, their penetration may become cop-
m.&mnw.v;\ deep owing to the channelling phenomenon. Laskin has described the
situation ve. - clearly. According to his basic idea, there always exist intense,

short, but intense, fluctuations along the channels are, in fact, analogues of what
we have called the M-pulses. Moreover, he assumed that the random sequence of
these events (i.e. pulses) should obey the Poisson statistics. Qur present theory is a
generalization of his : we admit an arbitrary, in general non-Poissonian, statistics of
.38@ pulses, stipulating only their Markov character. This generalization might be
._upm_.amsam. when, for instance, the crystalline lattice would be subjected to some
inhomogeneous deformation. The statistical distribution of various defects leading
to local deformations of the crystalline lattice may even imply correlations between
the defects and, consequently, the random sequence of the pulses affecting the flight
of the electrons in the channels really need not be Poissonian. Furthermore our
.armoaa .Sron applied to the dechannelling kinetics, provides an additional .8::
in Laskin’s kinetic equation. It is the term with the diffusion constant D, whilst
Laskin has taken D = ¢ (cf. [1)). ,

F [1],we offered also another idea for consideration: to employ the concept of
the M,So:a_. Process {(u) accompanied by the random M -pulses in a theory of quasi-
particles. Our idea was to vary the parameters defining the process £(7), in order
to model some interesting dispersion law in the corresponding Bloch ma_hwaoa for
g.m canonical density matrix of the quasiparticles. When having this application in
mind, the following remark is pertinent: in this application, we must unequivocally
ooﬁmmua ourselves to the Poisson modification of the random train of the M -pulses.
This simply follows from the physical meaning of the Bloch equation where the
temperature parameter B = 1/kgT plays a similar role as the time variable ¢ in
the theory of the present Paper. (If ¢(f) were not reduced to a constant, then
there would actually be no place for such a function in the Bloch equation m“..... the
density matrix at all.)

M.EE particular case when D — +0 deserves a special attention. Indeed, this
case is related to the notion of ” diffusion processes with random Eno::?ao:.omga
(if we do not consider Dy as infinite and 7, as zero). (If we do accept the formal
no:%n.mon of the present paper according to which D, — oo and Tp — +0, then we
rwﬁ. in fact, a ”degenerated class” of the diffusion processes with 3..%_5_ inter-
mittencies”.) The problem of diffusions with randomly distributed intermittencies
(a theoretical topic interesting in its own right) was put forward by Zeldovich et
al. [11]). Applications of the problem of diffusions with random intermittencies were
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discussed, e.g., by van Kampen [12] and by Balakrishnan et al. [13]. Recently also
Luczka et al. analysed the case of randomly interrupted diffusion {14], [15].

The multiplicative stochastic processes &(7) defined above are non-Gaussian
(provided that M # 0 and () # 0 irrespective of whether D does vanish or not).
Because of their relatively simple definition, they can compete, as we hope, with
other non-Gaussian stochastic processes. Examples of non-Gaussian stochastic
processes for which cumulants and related other mean values can be derived in
analytical forms do seem to be a rarity in the literature (cf. e.g. [16]).

Extensive calculations using the idea of pulse-modified Wiener processes are
performable in solving the problem of the homogenization of random concentration
profiles. This problem was recently solved with the Poissonian definition of the
array of diffusion-enhancing pulses {17) . Clearly, the use of an arbitrary (non-
Poissonian) array of the pulses in the calculations would equally be possible.

Our final example concerns the so-called superdiffusion in a randomly layered
aquifier.Here we have in mind a theoretical model which was constructed by Math-
eron and de Marsily [18] and extended recently by Bouchaud et al. [18]. The model
assumes a stationary (in time) and statistically uniform (in space) random velocity
field u:(y). (For simplicity, they have taken u, = u, = 0 and (4z(y))c = 0. Here
( )c is an average over all velocity "configurations”.) The z-axis is directed along
the layers and the y-axis perpendicularly to them. If there were no transfer of
matter from layer to layer, then any ‘diffusant, having its y-coordinate fixed in one
of the layers, would simply flow with a constant velocity u.(y) along the z-axis
(either forwards or backwards). However, if there is a migration mechanism in
the y-direction, this automatically triggers off also a migration in the z-direction.
In particular, Bouchaud et al. have defined the perpendicular migration by a
Wienerian process y(r) with a diffusion coefficient D. Then, having taken the au-
tocorrelation function of the velocity field in the simplest form corresponding to a
very short correlation length, (u(y)us(y'))c = o 8(y—y'), they were able to derive
the superdiffusive behaviour of the process z(1) (controlled by the process y(T):

(=(t)’) = [40/3(xD)"/?)/ (68)

Note that the superdiffusion means that (z(t)®)/t tends to infinity if t — co. To
generalize the result expressed by formula (68), we propose to use y(7) as the
pulse-modified Wiener process in the sense of the theory presented in this paper.
If we denote the average with respect to the process ¥(7) as ( )pw, we can write
the mean square displacement of z(t) as the integral

(z(£)*) {(z(t)*)e)ow
Aq\av.\md\mﬂw \. dk (exp{ik[y() =y })pw.  (69)
0 0 —o0

We stop our discussion at this point since a further elaboration of formula (69)
would require a new article. Anyway, we may in advance conclude that the ex-
pression ( ),w in formula (69) is a functional of the arbitrary probability function
®(7) and thus formula (69) defines a whole class of superdiffusions. Obviously, the
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superdiffusion which was analysed by Bouchaud et al. [19] does belong to this class
as a particular realisation.
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