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A systematic review and comparison of the existing phenomenological approach-
es and models for fast calculations of single-humped fission barriers is given. The
effects of angular momentum and excitation energy dependence of fission bar-
riers are discussed. Experimental data on excitation energy dependence of the
fissility I's/T¢or of compound nuclei are analyzed in the framework of the sta-
tistical approach by using different models for fission barriers, shell and pairing
corrections and level density parameter in order to identify their reliability and
range of applicability for Monte Carlo calculations of evaporative cascades. The
energy dependence of fission cross-sections for reactions induced by intermedi-
ate energy protons has been analyzed in the framework of the Cascade-Exciton
Model. A proposal for measurements at the FOBOS setup at Joint Inst. Nucl.
Res. is given.

L INTRODUCTION

The statics of fission-is governed by the variation of the potential energy of a
fissioning system as a function of deformation in the transition from the initial state
to scission (see recent reviews [1]-[5]). Therefore, the most important characteristics
of fissioning nuclei are fission barriers determined as differences between the saddle-
point and ground state masses

By = Myp(A,Z) — Mys(A, Z) . (1)

Various models used to calculate B; can be classified in three categories: mi-
croscopic, semiclassical or hybrid, and macroscopic ones (see [5] for a review). In
microscopic models, the nucleus is studied as a many-body problem of an ensemble
of nucleons moving in a self-consistent Hartree-Fock field with possible extensions
(see, e.g., [6]). This method should provide accurate knowledge of the fissioning
system. However, the complexity of the effective nucleon-nucleon interaction as
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well as the great number of nucleons in a heavy nucleus make the calculationg
very difficult and too lengthy to be used in Monte Carlo calculations of competing
fission and evaporation processes. Therefore, for statistical applications, the reg-
part of fission barriers is usually calculated either in the framework of such
macroscopic approaches as different versions of liquid-drop model (LDM) [7}-[9],
droplet model [11, 12}, single- Yukawa modified LDM [13], Yukawa-plus-exponentia]
modified LDM [10, 14, 15], or phenomenologically approximated [16] in accordance
with their experimental values.

To estimate the irregular” microscopic part of By, different hybrid approaches
are used taking into account quantal corrections for shell and pairing effects, finite
range of the nuclear force, effects of the diffuseness of the nuclear surface and other
physics effects [7)-[14]); or various phenomenological approximations are used [16,
17]. Apparently, the most adequate description of macroscopic fission barriers for
hot and usually rotating nuclei has been done by Sierk [15). Sierk also performed a

evaporation model calculations. But this code may require too much computing
time to obtain a satisfactorily statistics in the Monte Carlo simulation of reactions
in some cases.

In the present work we compare different approaches and models for fission
barriers that are easy to be computed. This is done in order to find out their appli-
cability for statistical calculations of nuclear reactions involving fission processes.

II. §>ONOmOOwHO-gHOWOmOOTHO APPROACHES
TO FISSION-BARRIER HEIGHTS

In the hybrid macroscopic-microscopic approach, a fission barrier is given by
a sum of a macroscopic smooth term and a microscopic term, each of them being
in the general case a function of the charge Z and the atomic mass number A,
the excitation energy of the fissioning nucleus E*, its angular momentum L and
deformation o

Bi(A, 2B, L,a) = BJ*r(4, 2, B* L, o) + BYT°(A,Z,E*, L,a).  (2)

As the starting point of our cosiderations, we do not take into account the excitation
energy and angular momentum dependences of By.

BITG73 approximation

Barashenkov et af. [16] has proposed to use a simple phenomenological ap-
proximation for fission barriers in fast statistical calculations. The authors of [16]
suggested not to calculate fission barriers within Monte Carlo simulations of nu-
clear reactions, but to use known experimental values and to extract from them the
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phenomenological ”irregular” part which depends on shell corrections, residual in-
teractions and other nuclear structure effects, and by approximating the remaining
“regular” part by a simple analytical expression

Nw.\mNN,QﬂwA>~ Nv = QWA.%.NV _ %gmmNﬂ.QﬂuA\Aq Nv +&w\ﬂ\aw~‘~aﬂﬂuA\A. Nv va

The "regular” part of the experimental fission barriers m‘wﬁ} Z) was well ap-
proximated by the function (in MeV)
+4.7(33.5 — Z2/A)3/4, .mm Z2/A<335; “)
—~2.7(33.5 - Z2 /A3, if Z2/A > 335.

The ”irregular” part was divided into two terms: a correction to the ::o_wwﬁ
ground state mass mS\%:.Q.\uTA. Z) and a correction to the nuclear saddle-point
mass QS\%;Q&A\».NV. The use of the Cameron shell and pairing corrections
tabulated in [18] has been proposed for SWEITCTS( 4, 7) [16]

A(Z,N)= S(Z,N)+ P(Z,N) =
[S(2) + P(2)] + [S(N) + P(N)]; (N=A-2). (5)

B}(A,Z) =125+ A

QS\..WN\HQN&A\»“ Nv

i

Alternatively, data on
DAN,ZVHMANv+wANV+MQ<V+wA>$_ (6)

tabulated in a subsequent work by Cameron et al. [19] are very convenient for
numerical calculations of evaporative cascade.

In Fig. 1, these two sets of Cameron’s shell corrections are shown for a notmn-
tion of odd-odd nuclei together with the Myers and Swiatecki LDM shell no:moSOJm
(7]. One can see that the discrepancy in the wvmo_ca.m values of two sets of .Op5m~o~.~ s
shell corrections is small (it is close to 2 MeV for just a few nucler), ér_«m a.rm dis-
crepancy between Cameron’s and Myers and Swiatecki’s values is more significant.
The approximation

-0.5 for even Z 0 for even N 7
BW,ITC(A, 2) = ? for odd Z v + A:Q oddn [+ (D

(in MeV) was obtained for QS\%;Q&A}. 2).

BG77 approximation

Another simple semi-phenomenological approximation for fission barriers has
been proposed by Barashenkov and Gereghi {17]. They use formula analogous to
(3) to calculate fission barriers

BPCST(A,Z) = B}(Z%/A) — A(A, Z) + 6877 4, Z). (8)

It was proposed to use the same Cameron’s corrections (5) or (6) for A(A, Z), while
0, for even Z and even N ;

%EQN.\A\»«NV = m.? »,Oﬂ O&& \& ’ mwv

26y, for odd Z and odd N ;
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Fig. 1. Comparison of Cameron’s [18], T
3 - » lruran, Cameron and Hilf’s {19] and M
Swiatecki’s [7] shell corrections. 6] and yers and

with .m\. = 1.248 MeV was suggested for §8¢77(4, 7) [20]. The use of the LDM
results in _.Ea parametrization of Cohen and Swiatecki [21] was suggested for the
macroscopic part of the fission barriers mwﬁNu\\C.

mw.wANw\\C — mw\bgﬁﬁ.wmwv -
_ 0.83(1—2)°, for 2/3 .
- nmbw\wﬁ ; 0 \AHAM,
0.38(3/4-2), for1/3<z<g/3, (10

where the fissility parameter z is given by

z = Wuoh - Nu\\»
257 ~ (ac/2as) (1~ K[(W < Z)JAF" (1)
as = 17.9439 §m<_ ac = 0.7053 MeV, k =1.7826 , :wv

Ahcg parameters from _“ C and the surfac m.o i
, d 0
. e o . 7 € Iig an AuO_.LOBr m_ﬁ. energies of a

E§ =as{l - k[(N - Z)/A]?} A3, (13)

Eg =acZ?/AV3, (14)

.Hrm phenomenological representation (10) approximates very well the macro-
scoplic r_.u?_ fission barriers (see Fig. 2) and provides satisfactory agreement of
i with the experimental data and, as mwnﬂ are easily computed, it may be
successfully used in Monte Carlo simulations of nuclear reactions m:<o_<._.:m mmmvmo:.
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LDM approaches

In the LDM, the experimental ground state mass for a nuclear equilibrium
deformation a° is given by

Mezp = Mipp(a®) + S°(NV, Z) + P(N, 2), (15)

where M7, is the LDM macroscopic mass, S®(N, Z) and P°(N, Z) are the shell
and the pairing corrections, respectively. We have

M! = M)+ ST(N, Z) + P/(N, 2) (16)

for a fissioning nucleus (af is the saddle-point deformation). Substituting (15,18)
into (1), we get

By = [Mlpp(ed) = Mipa(a®)] +
+ [ST(N,2) - S°(N,2)) +[P/(N, Z) - PYN, Z)). (17)

Commonly, the last equation is written in the following form in the literature !:
By = By ~ Wy, + §W,,, (18)

where m.w is the macroscopic LDM fission barrier, §W,, = S°(N, Z) is the ground
state shell correction and §W,, = S/(N, Z)+ P/(N, Z)— P°(N, Z) is the shell and
pairing (or more exactly, the increase in the pairing energy between the transition
state and ground state) correction at the saddle-point. Usually (see, e.g., [1]), one
makes the assumption that the major shell structure effects vanish for a nucleus
undergoing fission, as the nucleus deforms from the equilibrium ground state shape
towards to the saddle-point one, i.e., ST(N, Z) = 0. In general, there is no common
point of view in literature, what is to be used for §W,, in (18). So, some authors
(e.g. [1, 22]) neglect this term; others (e.g., [16, 17, 20]) use different phenomeno-
logical approximations, and, finally, the third group (e.g., [23]) fits this term from
the best description of experimental data.

In the notation of Nix [27], the potential energy of a deformed charged drop
relative to the spherical drop (the macroscopic LDM fission barrier mwwv is

I

B} Es—E§+Ec—E¢ =
[(Bs — 1) + 22(Bc — 1)) E§ = b(<) Es. (19)

Here EL and E¢ are the Coulomb energies of a spherical and a deformed drop,
respectively; EY and Es are their total surface energies; z is the fissility parameter

!In the present work, we confine ourselves to the analysis of single-humped fission barriers
only. In the case of transuranium nuclides, the heights of double-humped fission barriers B “ and

msm are expressed by m.v HQAQ..VI Wy + QS\MY where V(q;) is the macroscopic fission barrier
and § S\.._.v is the shell correction for the i-th maximum of the potential energy, which is calculated
from the liquid drop potential energy at corresponding deformation a4 % 0.3 and ap = 0.6,
WA ~ 2.80 MeV, and §W3E ~ 0.50 MeV [24]; and §W,, is calculated in the LDM [7]. (For a

more detailed information about double-hwnped fission barriers, see {23]-[26].)
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Em.m.gwnngnovmnmmmmo: r.m_ioa?iamom, E$) as functions of the fissility. parameter
z for i._m hDWS parameters [7] from [27] (marked as N69); in accordance with Cohen
and Swiatecki’s [21] parametrization (10) (CS63); for the single-Yukawa modified LDM

M”.AMWWM%m and Nix [13] (KN74); and for the Yukawa-plus-exponential modified LDM [14]

.Qmm:mm by (11); Bs and Bc are the relative surface and Coulomb energies depend-
Ing on-the deformation of the drop. They are tabulated {together with b(z)) in
[27] as functions of the fissility parameter z; E¢ and ES are defined by (13) and
(14). The values of constants as, ac, and k obtained from the best existing LDM
fit to nuclear masses and fission barriers [7] are given by (12). In other models
the <w_o:mm n.:a these constants differ from (12), which also results in changing o?"v.
and Bj. Fig. 2 shows the function b(z) calculated with Myers and Swiatecki’s

parameters (12), in the framework of the single-Yukawa modified LDM [13] with
as = 24.7 MeV, a¢ = (.7448 MeV, k=40, (20)
(nuclear radius parameter ro = 1.16 MeV and the range of the Yukawa function

a= ~..A fm), and in the framework of the <:rm€m.v~=m-mxvo:ossm_ modified LDM
[14] with parameters

as = 21.7 MeV, ac = 0.7322 MeV, a=10.65 fm, ro =1.18 fm, k=204, (21)

with the b(z) parametrized by (10) in accord with Cohen and Swiatecki [21]. One
can see m.rwo for medium and heavy nuclei the old approximation of Oorow and
mimmnmn_c (10) agrees very well with the LDM [7] prediction for b(z), and, being
easily computed, it may be successfully used in numerical om_o:_pzo:m,. ‘

For nuclei along Green’s approximation to the line of B-stability [28]

N -2 =044%/(4+200) . (22)
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Fig. 3. Comparison of macroscopic fission barriers calculated for nuclei along Green’s
approximation to the line of #-stability in the LDM with Myers and Swiatecki’s param-
eters [7] (marked as MS67); with Pauli and Ledergerber’s LDM parameters [8] (PL71);
in the Yukawa-plus-exponential modified LDM (14] (KNS79), and obtained with Sierk’s
subroutine BARFIT [15] (marked as $86). The experimental points are from [11, 29].

In Fig. 3, we compare macroscopic fission barriers calculated in the LDM with
Myers and Swiatecki’s parameters [7] (marked as MS67), in the Yukawa-plus-
exponential modified LDM [14] (KNS79), and in the LDM with parameters of
Pauli and Ledergerber (8] (PL71)

as = 19.008 MeV, ac =0.720 MeV, k =2.84. (23)

For comparison, this Figure also shows the experimental data from Refs. [11, 29]
and the results (marked as $86) obtained (for L = 0) with the subroutine BARFIT
of Sierk [15], which provides fission barrier heights as functions of Z,A,and L by a
multiparameter approximation of results obtained by the Yukawa-plus-exponential
modified LDM with the following parameters

as = 21.13 MeV, ac = 0.7448 MeV, a = 0.68 fm, r, = 1.16 fm, £=23. (24)
One can see that fission barriers calculated for medium nuclei using Pauli and Led-
ergerber’s parameters (23) are the highest ones Am.wﬁsniﬂ.wh,:v =55.13 MeV) and

those calculated in the LDM (7] are the second highest ones Am.wﬁsﬁvﬁg.mdd =
52.99 MeV). Those calculated within the Yukawa-plus-exponential and single- Yuka-
wa (KN74, see curve 2 in the low-right part of Fig.5) models are lying some-
what lower [B{"™**)(K NS79) = 52.99 MeV, BX™*)(586) = 41.03 MeV, and

m.w?:nuv:»‘\/*ﬂ& = 43.03 MeV]. Three models, which include the finite range of
nuclear force and the diffuse nuclear surface (KN74, KNS79, 586), yield results
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that are very close together, although for all nuclei the barriers calculated with
the Yukawa-plus-exponential model [14] they are slightly higher than those calcy.
lated within the single-Yukawa model (13]; the global approximation of Sierk [15]
provides the lowest barrier heights.

In the present baper, we test seven models to calculate macroscopic fission

barriers, namely, BITG73 [16], BG77 [17), MS67 [7], PL71 (8], KNS79 [14], KN74

[13], and S86 [15]). We test three sets of values of §Wy,, namely, the Cameron

corrections A(Z, N) defined by egs. (5) and (6), and the LDM shell corrections
with Myers and Swiatecki’s [7] parameters. For SW,p, we test two sets of values,
as defined by egs. (7) and (9)..

In Table 1, fission barriers calculated by phenomenological [16] and semi-
phenomenological [17] methods with Cameron’s [18] and Truran, Cameron and

Hilf’s [19] shell and pairing corrections are compared with the experimental values
from the summary Table IV of Ref. [11].

Table 1
Calculated (in the framework of Refs, (16, 17]; with shell and pairing corrections from
(18] and [19]) and experimental (Table IV of Ref. [1 1]) values of fission barriers

Isotope ]| Exp. Present calculations by different methods
[11] BITG73[16] BITG73[16] BGT7[17] BG77[17]
shell & pair. | shell & pair. | shell & pair. | shell & pair.
corr. [18] corr. [19] corr. [18] corr. [19]
Zvﬂr_: 273 27.65 25.62 32.40 30.36
1Tazs || 26.2 24.04 29.93 27.72 25.49
1880576 || 23.7 22.62 25.92 23.77 21.25
1870s76 || 22.5 22.36 25.24 23.82 20.86
1860s76 (| 22.5 21.59 24.49 22.85 20.54
¥l || 22.8 21.74 24.14 23.01 21.19
18900, Il 21.7 20.49 23.49 21.92 19.78
"98Hgeo || 21.8 22.11 19.72 21.40 20.61
201715, Il 22.3 22.47 21.12 22.60 21.27
209Bigs 1| 22.6 24.94 24.68 24.10 23.66
27Bigs | 21.2 21.91 22.75 22.77 21.69
22pog, || 18.6 19.62 19.44 19.24 20.05
Mpogs | 215 20.21 20.91 2080 20.74
20pog, Il 20.4 19.93 21.47 21.21 21.48
23At0s I 16.8 15.32 17.45 17.39 18.00
227Rags || 8.30 8.22 8.91 8.53 8.22
23T heo I 6.44 7.35 7.48 7.30 7.55
32Thge || 5.95 6.65 6.71 6.46 7.33
22pag; |l 6.18 6.09 6.77 6.95 6.45
2%y, || 6.29 6.71 6.32 6.24 7.01
B8Ugy |l 5.60 6.13 5.63 5.51 6.86
B4, |l 6.40 6.56 6.32 6.28 6.69
| U5, || 544 6.00 5.54 5.57 6.50

250

Table 1 (continued)

i by different methods
Isot Exp. Present calculations
Sepe :m BITG73[16] | BITG73[16] w@d:d wQEE
. shell & pair. | shell & pair. | shell & pair. | shell & pair.
corr. [18] corr. [19] corr. [18] corr. [19]

Yy, 5.75 6.32 6.05 6.23 @.ww
234y gy 5.30 5.66 5.28 5.40 m.ﬁ
2331J g 5.49 6.05 5.72 6.11 u.a
238Npes || 6.04 6.01 6.24 6.46 M.S
237Npes || 5.49 5.46 5.47 5.75 @A%
24pygy || 4.60 5.76 4.73 4.75 a._o
292pyg, || 4.70 5.48 4.57 4.67 m.S
291pyg, || 6.20 5.93 5.26 5.45 m.mu
240pye, I 4.85 5.38 4.58 ﬁm m.%
239Pugy || 5.48 5.83 5.28 5.52 u.$
238Pugs || 4.70 5.29 4.51 4.82 u.s
236pug, 1 4.55 5.00 4.28 4.68 m..:
244 6.21 5.70 5.48 5.81 ;

omos 5.88 5.53
292Amgs || 6.40 5.60 5.47 ] m.wm
241 6.00 5.05 4.80 5.17 .

Conas 04 5.69
250 4.10 5.35 3.66 4. .

s 4.44 5.60
298Cmygg || 4.25 5.56 4.29 : m.a
246 4.35 5.37 4.08 4.44 .

s 38 5.25
2440, 4.95 5.13 3.94 4. )

s 4.99
242 4.25 5.06 3.97 4.47 ;

et 4.68
240 4.15 5.00 3.92 4.57 3

e 5.37 5.27

250Bkor || 5.80 5.51 4.90 ) m.wm
249Bko7 || 4.35 5.15 4.52 4.85 A.wm
252Cfss |l 3.65 4.94 3.26 3.81 A.mm
250Cfss || 3.95 5.18 3.84 4.23 A.a
248015 1l 3.85 5.01 3.72 4.95 A.ﬂ
246Cfes || 3.85 4.80 3.60 4.9] B_.Ha
254 3.35 4.50 3.00 3.66 )

L 13 4.04
248 2.75 4.40 3.41 4. :

E oo 28 3.83
246Fm;00 || 2.55 4.36 3.50 4. .ﬁ
245 2.62 4.84 4.93 5.10 3.

prmioo 4.44 3.57
29 Fmye0 || 2.62 4.33 3.50 .

One can see that both these methods give Sw::m quite mosmwmnm.:n shor ex-
perimental data, although the approach vwovOmma in C& predicts mmm_o:. w:”.Mnmm
slightly closer to the experimental data for lighter nuclei and éoﬂo for Mmﬁ“%uwm
independently of what shell corrections from .Tm, 19] we use. The results M ined
with different shell corrections from [18, 19] differ appreciably only mo.n neutron wyw_
and neutron-deficient nuclei. In these cases, the use of shell corrections from [
seems to be more preferable.
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The results of calculations of Mmacroscopic fission barriers accordin

. g ) gtom
[7, 8, ~.u|_m_ with Myers and Swiatecki’s [7] shell corrections for microscopic ocicls
of barriers are compared in Table 2 to the same experimental data. One nmwmm;m
ee

that all these methods provide fission barriers quite close to the experimenta] data

Table 2
Calculated {macroscopic hw - in accordance with [7. 8, 13-15] and shell correcti

[7]) and experimental (Table IV of Ref. [11]) values of fission barriers. o ?oﬂ,
Isotope Exp. Present calculations by different methods
[11] 'MS67 | PLT1 KN74 | KNS79 S86{15] $86[15
7 [8] [13] [14] without | with shell
shell cor. cor, [7
:ﬁwrcd 21.3 11 28.28 [ 28.93 ] 24.85 | 27.00 | 2413 8.@% I ,
1aa 273 | 262 1 25.49 | 25.73 | 22.44 | 24.9 22.12 21.43
:qum.; 23.7 || 21.25 | 20.89 | 18.77 20.31 19.03 18.06°
_mmOma 22.5 || 20.86 | 20.81 | 18.96 20.27 18.84 17.78
::qum 22.5 || 20.54 | 20.79 | 19.21 20.30 18.65 17.57
:673, 22.8 || 21.19 | 20.65 | 18.93 20.45 17.98 18.31
108 Ir77 21.7 || 19.78 | 19.84 | 18.65 19.72 17.63 17.11
MSmmmc 21.8 || 20.61 | 20.17 | 19.99 20.85 14.60 18.81
ucwﬂ._mn 223 || 21.27 { 20.71 | 20.74 21.55 13.61 19.71
No«w._mw 22.6 || 23.66 | 22.44 | 22.04 23.37 11.94 22.30
Suw_mu 21.2 21.69 | 20.94 21.03 21.94 11.70 20.49
u:_uof 18.6 20.05 | 18.78 | 18.45 19.72 11.00 18.82
u_omvoﬁ 21.5 20.74 | 19.70 | 19.60 20.68 10.90 19.60
Eumuof 20.4 21.48 | 20.65 | 20.77 21.67 10.79 20.40
5.\»9& 16.8 || 18.00 | 17.13 | 17.27 18.13 9.90 17.02
N&mem 8.30 8.22 6.39 5.46 7.09 7.81 7.10
NS,HFS . 6.44 7.55 5.82 5.00 6.39 6.34 6.51
Nuuﬂrwo 5.95 7.33 5.76 5.06 6.36 6.30 6.34
muowmﬁ 6.18 6.45 5.34 5.09 5.95 5.49 5.63
Nwmdwm 6.29 7.01 5.41 4.80 5.84 5.06 6.04
qucmu 5.60 6.86 5.39 4.87 5.84 5.03 5.93
muaCS 6.40 6.69 5.35 4.94 5.83 4.99 5.80
wumdww 5.44 6.50 5.29 4.99 5.80 4.94 5.66
uuacom 5.75 6.31 5.22 5.02 5.75 4.89 5.50
uwudwu 5.30 6.09 5.13 5.05 5.69 4.84 5.33
vas Ugy 5.49 5.87 5.02 5.06 5.60 4.78 5.14
Npgs || 6.04 6.15 5.09 4.95 5.56 4.34 5.37
MHzEw 549 || 597 | 5.02 | 4.99 5.52 4.29 5.23
.kumucf 4.60 6.32 4.97 4.62 5.39 3.95 5.46
Pug, 4.70 6.10 4.97 4.79 5.42 3.88 5.32 :
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Table 2 (continued)

[ Tsotope || Exp. Present calculations by different methods
[11] | MS67 | PL71 | KN74 | KNS79 S86[15] S86[15]
[7] (8] [13] [14] without | with shell

; shell cor. cor. [7]
[ 2 Pug, || 6.20 | 597 | 494 | 4.86 5.41 3.84 5.22
240Pugs |l 485 ) 583 | 4.90 | 4.91 5.38 3.79 5.11
239%Pugy || 548 | 567 | 484 | 4.95 5.34 3.75 4.97
238Pugy || 4.70 {| 5.49 | 4.77 | 4.97 5.28 3.70 4.83
236Pugs || 4.55 || 5.10 | 4.57 | 4.97 5.11 3.58 4.48
244Amgs || 6.21 || 5.77 | 4.77 | 4.74 5.25 3.38 5.05
2Amgs || 6.40 || 553 | 472 | 4.86 5.23 3.30 4.86
M1 Amgs || 6.00 || 5.38 | 4.68 | 4.90 5.20 3.25 4.75
0Cmge || 4.10 || 5.69 | 446 | 4.36 4.87 3.05 491
28Cmge || 425 || 560 | 455 | 4.56 5.00 2.99 4.89
245Cmge || 4.35 || 5.45 | 4.58 | 4.70 5.07 2.93 4.80
4Cmgs || 4.25 || 525 | 456 | 4.89 5.07 2.85 4.65
292Cmygs || 4.25 || 4.99 | 4.47 | 4.88 5.01 2.75 4.43
20Cmgs || 4.15 || 4.68 | 4.31 | 4.89 4.88 2.65 4.15
250Bkg; || 5.80 || 527 | 4.36 | 4.53 4.76 2.58 4.63
29Bkgy || 435 1| 5.22 | 439 | 4.62 4.81 2.55 4.61
B2Cfeg || 3.65 || 4.95 | 4.16 | 4.49 4.54 2.22 4.38
30Cfe Il 3.95 || 4.88 | 4.23 | 4.66 4.64 2.16 4.35
248(fyg 385 1 475 | 4.24 | 4.78 4.68 2.08 4.26
246 g 385 | 457 | 4.20 | 4.84 4.66 2.00 4.11
B4Fmyge || 3.35 || 4.36 | 3.89 | 4.56 4.26 1.55 3.96
8Fmygp || 2.75 || 4.04 | 3.89 | 4.84 4.31 1.33 3.71
5Fmye || 2.55 || 3.83 | 3.77 | 4.82 4.21 1.25 3.51
M5Fmygo || 262 || 3.71 | 369 | 4.79 4.13 1.21 3.39
24Fmyg || 2.62 || 3.57 | 359 | 4.74 4.04 1.16 3.25

Figs. 4 and 5 show fission barriers calculated using methods of Refs. [7, 8, 13,
14, 16, 17] for nuclei along the line of B-stability together with the experimental
data. As one can see, all the methods provide fission barriers in good agree-
ment with experimental data for heavy nuclei. Here, the semi-phenomenological
approach of Barashenkov and Gereghi [17] permanently overestimates the experi-
mental data for nuclei lighter than Pb. Apparently, the Yukawa-plus-exponential
modified LDM [14] provides the best agreement of calculated barriers to the ex-
perimental data of nuclei along the line of B-stability.

Excitation energy dependence of fission barriers
The change of properties of atomic nuclei with increasing excitation energies

influences strongly the nuclear fissility. The calculations by the Thomas-Fermi [32]
and the Hartree-Fock [31] methods predict that ”thermal” effects must lead to the
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Fig. 4. Comparison of fission barriers predicted by phenomenological [16] Awmﬂﬂqu

~and semiphenomenological [17] (BG77) approaches with the experimental data [11, 29]
for nuclei along the line of B-stability. The solid lines are the results for zero excitation
energy (smooth lines — only the macroscopic part of B f; “irregular” lines — Cameron’s
[18] shell and pairing corrections). The dashed lines show the results of calculations for
excited nuclei; the values of excitation energies E are indicated in the Figure. The results
of calculations for the dependence of fission barriers on the excitation energy as proposed
in [30] are marked as BGIT74; SCM76 denotes those proposed in [31].

decrease of By. The investigations of the dependence of B s on nuclear temperature

nw” [31]-[34] show that the dependences of Coulomb E¢ and surface EJ energies on
are

Es(T)
Ec(T)

Es(0)[1 - 77
Ec(0)[1 - aT?), (25)

where the nuclear temperature T is given by

T=+/E/a ; E=E —A;.

Here, M.. and a are the excitation energy and level density parameter of a nucleus,
Momvmno:wiﬁabw\mn X - 14/VA [MeV] is the pairing energy of a fissioning nuclei
x=0,1,an or odd-odd, odd-even, and even-even nuclei. r ti

found thet [31] el, respectively). It was

Il

a=1-10"MeV™2, B=6.3157-10"3 MeV-2 | (26)

wmnmmwm:ro< et al. [30] proposed to estimate the dependence of By on E* by the
following empirical relation

By(E) = B, (0)/(1 + VE/24) 27)
Earlier, Yamaguchi {35] has derived by the means of classical thermodynamics

By (E) = By (0)(1 ~ E/Ey),
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Fig. 5. Comparison of fission barriers calculated in the framework of the LDM [7] (MS67),
the LDM [8] (PL71), the Yukawa-plus-exponential modified LDM [14] (KNS79), and the
singie-Yukawa modified LDM [13] (KN74) with the experimental data [11, 29] for nuclei
along the line of -stability. The remaining notation is the same as in Fig. 4.

where Eq = aT§, Ty =~ 9 MeV.

A recent attempt of Newton, Popescu and Leigh [36] interpolates the results
of Garcias et al. 2 [37] on the evolution of the fission barriers as a function of
temperature and angular momentum by a simple formula that can be incorporated
in a statistical model code.

In the present paper, we estimate the influence of ”thermal” effects on the
fission barrier By (see Figs. 4 and 5) in two ways, namely, by using the rela-
tion (25) with a and @ given by (26) for @ = A/10 (the results are marked as
SCMT6), and by a phenomenological relation (27) (BGIT74). One can see that
the phenomenological approach (27) provides faster decrease in By with increasing
excitation energy in comparison with the approach (25). This is highly appreciable

2Recently, Garcias et al. [37] calculated nuclear fission barriers using Thomas-Fermi model with
the Skyrme force, which self-consistently incorporates the effects of rotations and temperature.
But this method is too complicated to be used commonly in Monte Carlo calculations of fission

processes.
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lor medium weight and hght nucler with the encrgies ol excitation above 50 MeV.

"Thermal” effects may cause tenfold increase of the nuclear fissility for Z2/A < 97
(see, for example, [38]).

Dependence of fission barrier heights on the rotation of nuclei

fissioning nuclei are small [39]

in the case of proton-induced reactions. As seen
from Table 3, only a small fract

ion of the grazing angular momentum is left in the

Table 3
The mean angular momentum transfers < I > of fissioning nuclei and the maximum
possible angular momentum in the entrance channel (grazing angular momentum) l,,.
for different reactions [39]

Fuﬁss_fﬁ;?<_ias_Amv;a

p+7Th 140 25 4
250 35 1
500 49 1
1000 70 1
d+732Th 70 25 13
140 37 11
500 72 5
1000 102 5
a+*¥Th | 280 7 17
1000 148 7
| a+T"Au 280 72 28

L of fissioning nuclei in calculations of such reactions in the first order. On the

contrary, the momenta of fissioning nuclei are high in heavy-ion induced reactions

dependence on angular momenta of rotating nuclei. One of the most extensively
used and perhaps the most successful theoretical model for this purpose is the
Wonwﬁmos-hica-bwov Model (RLDM) of Cohen, Plasil and Swiatecki [9]. However,
questions have been raised about the general validity of the RLDM [40, 41).
Mustafa et al. [10] have proposed a model which differs from the RLDM in the
shape parametrization and in the calculation of the Coulomb, surface, and rotation

energies. The authors of [10] used the two-center-model shape parametrization
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which atliows 10r triaxiat SHAPE VArIatlons ald d CUNLIIUOUUS LIADIVIUIE L1 UL Uiiee
center to two-center shapes with a smooth neck. .w:,m% calculated ﬁ.ro m:nmwo.m energy
with the Yukawa-plus-exponential folding function of Krappe, Nix and w.mnw. [14],
which incorporates the effects of the finite range of ::a_mmn. force w:.n_ of mwa diffuse
nuclear surface, and calculated both the Mo:_w::u w.:m rotation energies with surface
i ss described by the Yukawa folding function.

%m:wwmn”,”:roa mm<m~ov~wm:a of this approach has been done r%. mmm.ln Tﬂ., He used
highly accurate numerical techniques, flexible shape v.n:wamﬁ.:mwsos which M:oiw
accurate estimation of the convergence of qo.mc_em as a function of the number o

degrees of freedom of the nuclear shapes noum_m.mw.mm_ mm& a better .mmp of vmwmgmnmnm
for calculations in comparison with [10]. In addition, Sierk wvvwe.cgwemm his results
for hundreds of nuclei in a usable form in two noa.v:emn m:.vno::.com BARFIT and
MOMFIT, which provide accurate values for fission barrier heights w:m. saddle-
point moments of inertia as the functions of Z, A and L. These subroutines can
be easily incorporated in statistical evaporation models. .

At last, one has to mention phenomenological approach frequently used in maw.
tistical calculations (e.g. {16, 42]) to estimate the .mmvozams.om of By on .h. S&mnmE
one assumes that the nuclear rotation energy Eg is not m«.&_._mv_m. for excitation en-
ergy released in the fission and evaporation processes. This implies that the mmm_ou
barrier By(L) of a fissioning nucleus with the angular momentum L can be written

) By(1) = By (0) - (f - E). 29)

Here, Ef’ and Ejf are nuclear rotational energies for the ground state and at the
)
saddle-point, respectively,

2
m.nu - E
R~ M'S.o '

2
B = NAN\ + Cv , Ammv
K- 2T sp

Tet = 0.4M,r2A%/3. (30)

L is the angular momentum of nucleus, M, is the nucleon mass, and the .<m~:wm
calculated and plotted in [43] or tabulated in [21] are used for the moment of inertia
of a nucleus at the saddle-point J,,. o .
As seen from Fig. 6, Strutinsky’s [43] results for moments of inertia of nuclei at
the saddle-point are very close to the Cohen and Swiatecki ones {21]; thus, concrete
numerical calculations may be done with any one of them. . . .
As an example, Fig. 7 shows macroscopic fission vw.:_mam of wonwn_:m nuclei
with different values of angular momentum L calculated in accordance with egs.
(28-30) with the LDM parameters [7], and m?:n.msmr«.m values for N% [43], and, for
a comparison, also fission barriers computed with Sierk’s subroutine BARFIT as
functions of the mass number for S-stable nuclei. One can see that vrmuoamao_.om-
ical approach (28-30) with LDM (7] predicts significantly higher values for fission
barriers than the Yukawa-plus-exponential model {15] for mS&._ <wr.5m of the an-
gular momentum L and A < 200. However, the results obtained in both these
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Fig. 6. Comparison of Strutinsky’s [43] and Cohen and Swiatecki’s [21) prediction of
moments of inertia of nuclei at the saddle-point -as functions of the fissility parameter z.

approaches are similar for 4 > 200 and/or high values of the nuclear angular
momentum L.

Fig. 8 shows the fission barrier heights calculated within different models as
functions of the angular momentum I for 183Tb, 1760s, and 22°Np. One can see
that the barriers calculated phenomenologically according to (28-30) in the LDM
[7] are similar to those calculated in the Yukawa-plus-exponential model [5] and
to Mustafa’s et al. [10] predictions. Qur calculations show that Sierk’s subrou-
tine BARFIT [15] needs about a tenfold increase of computing time in comparison
with these phenomenological calculations. Thus, we can successfully use the phe-
nomenological approach (28-30) to estimate the dependence of fission barriers on
the angular momentum of nucleus in real Monte Carlo calculations which need
much computing time to obtain a good statistics.

III. ANALYSIS OF FISSILITY OF EXCITED
COMPOUND NUCLEI

Basic relations for particle emission and fission widths

In this section, we will use the fission barriers considered above to analyze
the energy dependence of the fissility of different excited compound nuclei. In the
Weisskopf statistical theory of particle emission [44] and’the Bohr and Wheeler
[45] theory of fission, the partial widths T; for the emission of a particle j (5 =
n,p,d, t,3He, @) and Iy for fission are expressed by the approximate formulae
(units: h = ¢ = I; see, e.g., [23, 42)):

v U;-8B;
Aw.&. +1 m; :
I = J i(U; — B; — EYEd 31
ﬁnbnAan Q.N:LNVPAS Bj — E)EdE ) ( )
Vi
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Fig. 7. Calculated fission barriers of rotating nuclei with different <P:.:wm of the w:.ﬁmw
angular momentum L as functions of the mass E::vm_,. for m-mapr_m Emo_m_. Lower Fig.: .o e
LDM {7] with Strutinsky’s [43] values for moments of Emw:w of nuclei at ar.m mmm&m-vm,:o.
in accordance with (28-30); upper Fig.: predictions of Sierk’s [15] subroutine BARFIT.

th‘m.\

J \ ps(Us — By — E)E . (32)

_J\ - ms,b%qav
Here, p., p;, and p; are the level mmamm:mm of the .8:.60::& _E&m:m, a.rm amm_mm:m_
nucleus produced after the emission of the j-th particle, and of the mmm_oE.:m ::M mMm
at the fission saddle point, respectively; m;, s; and mu“ are the mass, spin and arm
binding energy of the j-th particle, Rmvmn.ﬁ?m:x ,m\ 1s the fission barrier rﬁm;au
We calculate the binding energies of particles using the Cameron formulae [18];
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Fig. nw. Calculated fission barriers as functions of the angular momentum for !53T} 176 g
and ***Np. Solid and dashed lines are our calculations in accord with (28-30) for S:_W LDM
[7] and Strutinsky’s [43] values for moments of inertia of nuclei at the saddle-point for r,
=141fm and ry = 1.2 fm, respectively. The open circles show the tabulated results of

Mustafa et al. [10]. The solid circles are the results obtained with the subroutine BARFIT
of Sierk [15]. |

7l.o(E) is the inverse cross-section for absorption of the J-th particle with kinetic

w:mam.m E by the residual nucleus. The approximation proposed by Dostrovsky [46]
1s used,

: e B;
Q..-N:eﬂm.v - Q..Mmo«:Qu. Aw + %v , A“wwv
where

i __p2.
Ogeom = TH; ; R;

mo\_.&w i fo=15fm;

e -1/3 -
an =0.76+22471%, g = (2.124;7° — 0.05)/a, .

For charged particles Bj = —V; , where V; is the effective Coulomb barrier and
the constants «;j are calculated for given nucleus by interpolation of the values
of W,mm. [46]. The angular momentum dependence of the level density is done by
p(E ‘.hv = p(U,0) where U = E* _ Er and Eg are the ”thermal” and rotational
energies of the nucleus, respectively;

Ve=EB'-Bp-Ac; U=E -F-4,, Uy=E"-Ef-a,.

Here, E* is 2.5 total excitation energy of the compound nucleus; £, EY,, and m_%
are the 33:.0:& energies for the compound, residual, and mmmmoi:m nucleus at
the saddle point, respectively, and they are determined by (29,30);

A= x-12/A, ; Aj =x-12\/A;; ; and Af = x - 14v/4A, (MeV)
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are the pairing energies of the compound and residual nuclei, and of the fission
saddle point, respectively; A;; = A, — A;, where A, and Aj; are the mass numbers
of the compound nucleus and of the j-th particle, respectively.

Particle emission and fission widths (31-32) are obtained within the Fermi-gas

approach to the nuclear level density
p(E") = const -exp{2VaE"} .

Thus (see, e.g., [47))

_ (255 + )mjai2 477 ,
b= ey (G B Dexn(k)] -
- [6+ an - u»w + 6k; — 6) exp(k;)]/(4a;)} , (34)
£ 1 + (ks — 1) exp(ky) (35)

4nay exp(2v/a U,) '
where B, = B, — f, ; ian = Bi + Vi k=2 QN.ASIwEW ky =

2\/a;(Us — By) , and a,, aj, and a; are the level density parameters of the com-
pound and residual nuclei, and of the fission saddle point, respectively.
In the case of transuranium nuclei, when double-humped fission barriers are
used, we define the fission width by the expression (see, e.g., [23)]):
Fal'p

0= ity (36)

where I'y and ['g are the partial widths for the corresponding saddle points. We
calculate each of these widths by formula (35) with its own shell correction.

Comparison with Experiment

A lot of experimental data are now available on the nuclear fissility and fission
cross-section of heavy nuclei induced by different probes (reviews [1]-[4]). The
fissility is the ratio of the fission cross-section to the inelastic interaction cross-
section Py = 0;/0;,. For a given excited compound nucleus, the fissility may be
estimated as the ratio of partial widths I'y/Tot, where Ty = Iy+ MU.Q. r;.

We have analyzed practically all the data on nuclear fissility published in re-
view [1] using formulae (34-35) and fission barriers regarded above. Let us show
here only some of the results. As an example, measured [1] and calculated fissilities
for 18%]r, 18805, 189T3 and 173Ly nuclides are shown in Fig. 9. The calculations
were performed using fission barriers from Ref. [14] without taking into account
the dependence of By on the excitation energy E*, with Cameron’s [19] shell and
pairing corrections, the third 1ljinov, Mebel’s et al. systematics for the level den-
sity parameter without an explicit taking into account of collective effects, for the
values of the ratio ay/a, indicated in the Figure. One can see that one obtains a
good description of experimental data in this approach. Our analysis shows that
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Fig. 9. Excitation energy dependence  Fig. 10. Dependence of the calculated fis.
of the fissility Ts/Tio of different nuclei.  sility of the excited 1891 compound nucleus
Curves are the results of our calculation  on the values of asfan. The remaining no-
with KNS79 [14] fission barriers, C70 [19]  tation is the same as in Fig. 9.

shell corrections, the third ljinov, Mebel

et al. [23] systematics for the level density

parameter without the explicit taking into

account of collective effects, Experimental

points were taken from the review [1). The

used values for the ratio as/a, are shown

in Figure. ,

it is possible to select a concrete model for the fission barrier, shell and pairing
corrections for every nuclide, a systematics for the level density parameter, and to
fit the value of the ratio as/an to obtain very good description of the experimen-
tal data. But it is not possible to describe well the experimental fissilities for all
nuclides with a fixed set of these options.

Calculated fissilities are the most sensitive to the used values of the ratio
as/a,. As an example, Fig. 10 shows how the calculated fissility of the excited
1891t nuclide depends on the ratio as/a,. One can see that for high excitation
energies £* > 50 MeV a small increase of the ratio as/a, from 1.04 to 1.13 results
In an increase of the calculated fissility more than one order of magnitude.

Fig. 11 shows the fissilities of the 189 nuclide for the ratio ayfa, = 1.114
obtained using the third Iljinov et al. systematics for the level density parameters
[23], Cameron’s (19] shell and pairing corrections calculated with different fission
barriers, namely, BITG73 [16], BG77 {17], MS67 [7], PL71 (8], KN74 [13], KNST79
(14], and S86 (15] without taking into account the dependence of By on E*. One
can see that all fission barriers used provide a correct description of the shape of
the calculated curves in this case, and by fitting the value of the ratio as/an, it is

262

-t T v ¥ T v T —x 1| T T S— 3
10 A R
E k|
10 7 3 3 0¥ 2 3
8 § 10 ¢ 3
10 : 3 3
F 3 10k z
10 ¢ 3 E E
2 £ E 810 ¢ X
B 0 E| [ £ E
ﬁ_o ] . bareiore: ] 10 7k
- | issi ATTIErs: o £ E
10 7 PR =10 1
- 2 - BG77 ] E E
10 ¢ 3 - MS67, PL71 % 10 7k r
E and KNS79 7 E a/a,=1.114 3
10 "k 4 - KN74 3 10% | £ 1UBZH(E"), BGIT743
2= 506 E S Nnmmw m.v_ SCM76 3
10 (a/as=1.114) e A-B(E E
ml\ ) . m en 1 1 i 1 i 1 1 1 3

o 1 I -1
10 "56730 40 50 60 70 80 90 100 10752030 40 50 60 70 80 90100
E (MeV) E (MeV)

Fig. 11. Dependence of the fissility of the Fig. 12. Dependence of the fissility of the
excited '*°T compound nudeus on the fis-  excited "**I compound nucleus on the form
sion barriers used. Calculations done with  of the excitation energy dependence of fis-
MS67, PL71 and KNS79 fission barriers sion barriers By(E*). The remaining nota-
are indistinguishable in the scale of this tjon is the same as in Fig. 9. Dependence
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as in Fig. 9. compound nucleus on the values of as/ay.
The remaining notation is the same as in
Fig. 9.

possible to obtain a good description also for the absolute value of the fissility for
each of the models for B -

An example of the dependence of the calculated fissilities on the form of the
energy dependence of the fission barriers By(E*) is shown in Fig. 12. Our analysis
shows that it is possible to fit the value of the ratio ay /a, and to describe the'data
with the dependences B;(E™) proposed by Barashenkov et al. [30] and by Sauer
et al. [31], as well as without explicit dependence of B; on E* within the interval
of energies regarded here. To elucidate better this question, it is necessary to ana-
lyze the fissilities and fission cross-sections in a larger range of incident/excitation
energies.

An example of influence of the angular momentum on the fissility of an ex-
cited fissioning nucleus is shown in Fig. 13. One can see that we can neglect the
dependence of the fission barriers on the angular momentum in calculations of the
nuclear fissilities for small values of the angular momentum L < 20 (that is, e.g.,
the case of nucleon-nucleus interactions at intermediate energies). On the contrary,
taking into account the dependence By (L) not only increases the absolute values
of the fissilities several orders of magnitude for high values of [ (e.g. in heavy-ion
induced reactions), but it also significantly changes the shape of the dependence of
nuclear fissility on the excitation energy of a rotating fissioning nucleus.
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Fig. 14 shows how theoretical fissility depends on the systematics for the
level density parameter used in the calculations. One can see that Malyshev’s
systematics for a(Z, N) provides a good description of the shape (and by fitting
the ratio a; /a, also of the absolute value) of the nuclear fissility as a function of
E* only for low values of E*. Cherepanov and ljinov’s [48] and Ijinov, Mebel’s

et al. [28] systematics for a(Z, N, E*)

allow one to obtain a good description of

the data in a larger interval of E”, they reproduce very close results and seem to
describe the data better than the popular systematics of Ignatyuk et al. [49].

IV. THE FISSION CROSS-SECTION

In this section, we combine all the above-considered systematics for fission
barriers, shell and palring corrections, level density parameters, and formulae for
the calculation of the fission width in the Cascade-Exciton Model (CEM) of nuclear
reactions [51] and calculate the fission cross-section for msghsm&mpm-mzonm% proton-
induced reactions. As the details may be found in [51], we remember here only that
the model assumes that the reactions occur in three stages. The first stage is the
intranuclear cascade, in which primary particles can be rescattered several times
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prior to their absorption, or escape from the nucleus. The excited residual nucleus
formed after the emission of the cascade particles determines the particle-hole con-
figuration that serves as a starting point for the second, pre-equilibrium stage of the
reaction. The subsequent relaxation of the nuclear excitation is treated in terms of
the exciton model of pre-equilibrium decay, which includes the description of the
equilibrium evaporative stage of the reaction. The model uses the Monte Carlo
method to simulate all three stages of the reactions.

The fission cross-section’ oy is determined by the ratio of the number Ny of
iission events to the total number N; of Monte Carlo simulations in CEM,

Q\”Q..*.»U\“Q..:r\\//\\.l..\“Q.wmoSn\N“l‘H. ) Awﬂv

where 0in = 04e0m Nin /Ny is the total reaction cross-section, Nj, is the total num-
ber of simulated inelastic interactions, and Ogeom 1s the geometrical cross-section
for the projectile-target interaction. In the case of low-fissioning nuclei (e.g. gold)
Ny << Ny, and, as a consequence, a large number of cascades should be calculated
to obtain the value o; with sufficient statistical accuracy, so that the calculation of
oy becomes extremely time-consuming. Therefore, besides the direct calculation
of the fission cross-section via the expression (37), we have carried out {following
Barashenkov et al. {30]) Monte Carlo sampling by means of the statistical functions
W, = ER_ Wni and Wy =1 — W, in this case. Here, W, is the probability of the
nucleus to drop” the excitation energy E* by a chain (cascade) of N successive
evaporations of particles; Wy is the probability for the nucleus to fission at one
of the chain stages; wp; = 1 — wy; is the probability of particle emission at the
i-th stage of the evaporative cascade; wy; is the corresponding fission probability
which is easy to determine using the formulae (34-35) for the widths [; and Ty.
After the subsequent averaging of Wy over the total number Nj, of the cascades
followed, and after multiplication of the result by the corresponding total inelastic
cross-section oy, we obtain the following expression for the fission cross-section:

Nin
oy = 1Y Wy (38)
mn i=1

As an example, the incident energy dependences of experimental and calcu-
lated within this formula fission cross-sections for proton-gold and -uranium inter-
actions are shown in Fig. 15. We performed these calculations with Cameron’s
(18] shell and pairing corrections, third Iljinov, Mebel’s et al. [23] systematics form
the level density parameter, Krappe, Nix and Sierk’s (14] fission barriers with the
dependences B;(E*) proposed by Barashenkov et al. [30], by Sauer et al. [34], as
well as without a dependence of By on E*. The values used for the ratio ay/a,
are shown in the Figure. One can see that CEM reproduces correctly the shape
and the absolute value of the fission cross-sections in the interval of bombarding
encrgies regarded here by choosing the corresponding values for the ratio agfa,,
independently of the form of the dependence By(E*) used in the calculations. Sim-
ilar results have been obtained also for other targets. A more detailed analysis of
fission processes in the framework of the CEM will be done in a separate paper.
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Fig. 15. .u.,rm energy dependence of the fission cross section for nuclei of gold and uranium
Om.._n._:w:o:m were performed with KNS79 {14] fission barriers, Cameron’s [18] shell s:m
pairing corrections, third Iljinov, Mebel’s et ai. [23] systematics for the level density
parameter, for the dependences of By on E* proposed by Barashenkov et al. (BGIT74)
[30], by Sauer et al. (SCM76) [31], as well as without the dependence of By on E*. The
values used for the ratio as/an are shown in the Figure. The experimental points are
taken from the summary Table 159 of the monograph {52].

V. SUMMARY AND CONCLUSIONS

. Review and comparative analysis of the models for description of fast-computing
m_am_w-w::ﬁmm fission barriers for statistical calculations are given. It shows that
the simple m.:a time-saving phenomenological approaches of Barashenkov et al.
[16, 17) UwoSmm equally good descriptions of the experimental fission barriers with
Cameron’s [18] and Truran, Cameron and Hilf’s [19] shell and pairing corrections
both very convenient for Monte Carlo calculations. Nevertheless for neutron-rich
and neutron-deficient nuclei, the use of the shell corrections ?o:w Ref. [19] seems
to be more preferable. When one uses popular Myers and Swiatecki’s [7] shell
oo:mniomm to describe nuclear fission, the Yukawa-plus-exponential modified LDM
[14] provides the best agreement of calculated B; with the experimental data for
the nuclei along the line of B-stability.

. Oﬂ.: estimation of the reduction of the fission barrier heights with increasing
excltation energy E* has shown that the phenomenological approach (27) proposed
.U% wm:.mmrm:_n.é et al. [30] provides a significantly stronger decrease of B, with
Increasing £* in comparison with the approach (25) of Sauer et al. [31]. =Hrm~5&=
mmmnﬁ.m Imay cause about a tenfold increase of the nuclear fissility for medium weight
and light nuclei with the excitation energies above 50 MeV. ’
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It has been shown that if one takes into account the dependence of fission
barriers on the angular momentum of a fissioning nucleus, the phenomenologi-
cal approach with formulae (28-30) provides results similar to those obtained by
Mustafa’s et al. {10] and Sierk’s [15] models, but needs about one tenth of comput-
ing time in comparison with the subroutine BARFIT of Sierk and, therefore, it is
more convenient for Monte Carlo calculations. The moments of inertia of Strutin-
sky [43] at the saddle-point are very close to the Cohen and Swiatecki’s [21] ones,
so that concrete numerical calculations may be done with any of them.

Nuclear fissilities Py for different excited compound nuclei as functions of the
excitation energies E* have been studied. We performed a detailed analysis of
the dependence of theoretical fissilities on the models for B; and functional forms
By = Bf(E*) and By = B;(L) on the systematics for the level density parameter,
and on the values of the ratio as/a, used in the calculations. It has been found
that it is possible to select a concrete model for By, a(Z, N, E*), for the shell and
pairing corrections, and to fit the ratio as/a, to obtain excellent description of
experimental data for every nuclide. But we did not succeed to describe well the
experimental Py simultaneously for all the nuclides with a fixed set of these options.
Theoretical values of P; are the most sensitive ones to the values of the ratio ay/a,
used in calculations. We have found out that Cherepanov and Iljinov’s [48] and
Hjinov, Mebel’s et al. [23] systematics for a(Z, N, E*) allow one to obtain a good
description of nuclear fissilities in the whole interval of excitation energies regarded
here, they reproduce results very close and they seem to describe the data better
than the popular systematics of Ignatyuk et al. [49].

is able to reproduce correctly the shape and the absolute value (let us recall
that the CEM predicts the absolute values for all calculated characteristics and does
not require any normalization to adjust the results) of the fission cross-sections for
proton-nucleus interactions at intermediate energies. This fact, together with good
description of proton- and neutron-induced particle production published in [51,
53] indicates the predictive power of CEM and the possibility of using it to provide
nuclear data at intermediate energies needed for different important applications,
e.g., for the transmutation of long-lived radionuclides produced in reactors with a
spallation source.

Our analysis has shown that very voluminous but uncoordinated experimental
data on fission processes obtained by now in separate measurements do not permit
one to discriminate various models for fission barriers and to determine simultane-
ously the value of the ratio aj /a,. New complex data on fission processes, measured
simultaneously with the characteristics of all emitted particles and fragments for
such reactions where the fission cross-section is of the same order of magnitude
with the particle- and fragment-production cross-sections, and the analysis of all
these data in a unique approach may clear up these questions. Such ”complete”
measurements are possible and desirable in the near future at the FOBOS setup
at the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear
Research (Dubna).
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