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We study concentric shells of matter admitting a spin density and match the
configuration to the exterior Schwarzschild solution. To render the problem
solvable we allow the normal pressure to vanish in the outer shell and match
the solution of the outer shell to the inner shell at the radius of the inner shell.

I. INTRODUCTION

After the discovery of general relativity, numerous generalizations to the the-
ory have been developed. They have never been completely discarded because their
predictions involve too small corrections to the usual predictions of general relativ-
ity. Weyl’s gauge invariant geometry [1] includes a vector field in the geometry of
space time, Moffat’s theory {2] admitting a non-symimetric metric, Brans-Dicke the-
ory [3] admitting a scalar field in addition to the metric and Einstein-Cartan theory
(EC) [4] allowing for torsion and a nonsymmetric connection. All these theories
represent generalizations of the original Einstein theory that lead to modifications
in cosmology and astrophysics that are worthwhile considering. Actually numer-
ous torsion theories exist with the E.C. theory being the most popular, however
gauging the Poincare group leads to a tetrad ej and spin connection Em& which in
turn generate the metric and torsion and this theory is not necessarily equivalent
to the E.C. theory [5]. In fact Weinberg has suggested that the conditions under
which the Poincare theory is proved equivalent to the EC theory have never been
fully understood [6]. In the original form of the EC theory, the Einstein-like equa-
tion relates the Einstein tensor to the canonical energy momentum tensor and the
torsion is related to the spin density [7]. For spin density S and perfect fluid, the
EC theory is equivalent to General Relativity with the replacement
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where x = 87G/c? [8].

The object of this paper is to study what effect a spin density has on the
spherically symmetric distribution of matter which has two concentric layers. We
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first find the solution in the outer layer by setting the normal pressure equal to 0,
we then find the solution in the inner layer with spin density and pressure. Finally,
we match at the boundary of the two layers and match the solution in the outer
layer to the exterior solution to obtain the complete solution.

II. SPHERICALLY SYMMETRIC DISTRIBUTION OF MATTER
AND SPIN DENSITY IN TWO CONCENTRIC LAYERS

In [8] it was pointed out that for a spherical distribution of matter with the
spins aligned in the radial direction, the E.C. theory can be described by allowing
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with the usual spherically symmetric Einstein equations (S = spin density). The
Einstein equations become with the above replacement and condition of spherical
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where .
mﬁ»”m.ﬂ%“lﬁ“ﬂwnﬁw (5)
and € and P are modified as in Eq.(1).
We consider a two layer configuration of matter: For Ry <r < Ry, € =<y,
S=0andfor0<r< Ry, e= €02, S = Sp = Constant.
For R; < r < Ry we have
er=1- mwﬁmmo_ﬁm + mw, (6)
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where we have set the radial pressure equal to 0 in the (}) Einstein equation and
S5 =0. For r > Ry we have
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;From Eq. (7) we have for R) <r < R»
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From the relation . M
=" munw
at r = Ry we have matching Eq. (10) at r = Ry to Eq. (8) at r = Ry
Rz ~
in(1-2M u\ m?, - 1)dr+Cs. (11)
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The solution for R; <r < Ry is
2GM Ray 19
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for Ry < r < R,. . .
We now study the set of Einstein equations for the region 0 < r < R; for

0<r< R
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(S = So, € = €o2; €02, S0 = constant)
the equations read
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Eq. (15) gives
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Eq. (16) gives
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and from Egs. (15,17,19) and (20)
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(A, B = constants of integration).

To mwm A, B we express P in terms of e” and set it equal to 0 ar r = R, and then
set e mn:& to the value in the region R; < r < Ryatr=R, .
In calculating A4, B we first find v’ from Eq. (21) .
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using Eq. (17), at r = Ry, (P, =0 ) gives
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We next match Eq. (21) to Eq. (12) at r = R,

B _ 2GM Raq
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Bq.(22) and Eq. (23) give for A4, B
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Thus for Region (A), for r > Ry
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Region (B) for Ry > r > R;
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c
( where C, is found by setting Py = 0 at r = R; and using e~*/? at r = R; from
Eq. (12)
4xGS?

- €02 — |ou|n.
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and (e*/?), = A — BV/1 — ar? where A, B are given by Eq. (24).

This represents a complete and exact solution for the restriction of vanishing
normal pressure for Ry < r < Rz and constant energy density for B < r < Ra,
as well as constant spin density for 0 < r < Ry and constant energy density for

0<r<R;.

IIT. CONCLUSION

This analysis has generated an exact solution for a configuration of spins con-
fined within a spherical layer of matter with vanishing normal pressure. Actually
to calculate the metric and pressure for ) < r < Ry when the normal pressure
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does not vanish involves a set of approximations which makes a numerical anal-
ysis necessary. Since the mass of the two layer configuration will depend on the
spin density we could expect that red-shifts from such condensed astrophysical
objects in the cosmos would have an anomalous dependence on the spin density.
This calculation also suggets that spin generated torsion would be influential in the
early universe in generating stable bound condensation from an initially unpolar-
ized medium. Cosmological signatures of such condensations might be unexplained
structure formation near density voids [9] that cannot be explained by any other
mechanism than that of spin generated torsion. In future works the question of
stability of such a two layer configuration admitting spin density will be discussed.
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