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We propose a numerical method for obtaining the eigenvalues and eigenfunctions
of the one-dimensional time-independent Schrodinger equation. The eigenvalue
problem is transformed into a system of two first-order ordinary linear differ-
ential equations for the wavefunction and its first derivative. The propagation

L. INTRODUCTION

Although the one-dimensional time-independent Schrédinger equation can be
accurately solved in many different ways there is still a great interest in developing
simpler and more accurate algorithms that can be run in small personal computers
[1]. The most general and widely used algorithms are based on the finite-difference
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approach. Among them, We mention the 2:520<-Ooo_@< [2,3] method ang its im-
Provements [4-8]. A simpler and powerful integration formula has been derived
by the use of perturbation theory [9]. There are also methods based on the traps.
formation of the linear eigenvalue problem into 4 nonlinear ordinary &mmwmaaw_
€quation such as Milpe’s [10] or Riccati’s [11).

Here, we are interested ip the numerica] algorithms based on the Propagation
matrix method. Light and co-workers proved that it is useful in treating potentja]
[12], inelastic [13-15], and reactive [16) scattering. Devrieg [17] resorted to an
approximate sum of the Taylor €Xpansion of the Propagation matrix to obtain
Tesonant eigenvalues. Ixary (18] proposed an efficient perturbative approach to the
Propagation matrix for the calculation of resonant and bound-state eigenvalues, A
Power series expansion for the Propagation matrix Proves to be simpler and accurate

As far as we know, the €xponential form of the Propagation matrix [12-16] and
the Magnus eXpansion [20] have pot been used in the calculation of boyng state
eigenvalues and eigenfunctions, The purpose of the present article Is to explore

such an application. We develop the method and discuss some of its properties in

II. THE HNHVOZHZHH»H. H.NOF»O.P.HHOZ MATRIX METHOD

The time-independent Schrodinger equation for one-dimensjonal and central-
field models can be written

12)= V() - E, (1)

where E is the energy eigenvalue and units are chosen so that h=m=1 The
boundary conditions wil] pe considered later o along with the examples. Eq.
(1) can be transformed into 5 system of two first-order linear ordinary differentjal

¥'(2) = H(z)d(z), (2a)

where
_ | ¥(=) 1 0 1
®(z) = NSRHV ) H(z) = 9(z) 0 (26)
The propagation matrix U(z’, z) enables one to obtain D(2') from ®(z) according

Gﬁﬁ.\v = Q?\.\,HVGA&V. A.wv
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On differentiating this last equation with respect to z‘ and using £q. (1) we find
that U(z’, z) satisfies
%:\Ea\_ )= H(z')U (', z), (4)
z

where according to () U(z,z) = I'is the 2 x 2 Em.so:@ anlx..
It follows from (4) that the propagation matrix can be written

U, z) = ﬁ mm&w mwm& . 5)

: 2
where u(z’, z) and v(a', 5) are two linearly independent solutions of 8%w(z') /9z'? =
q(z')w(z’) with the initial conditions
Ov Ou

ma\?\,sv_iun =1and v(z,z) = M\.?\.Rv_u\un =0.

This form of the propagation matrix has been used by Ixaru [18) ,.‘:.E Ferndndez et
al. [19] and is the basis of the canonical functions method [23] which has recently
Mw& been proved to be numerically and formally equivalent to the Z:EmwofOooF%

algorithm (2,3). .
Magnus [20] showed that U/ (z',z) can be written

U(z',z) = exp A(z', z), Az, z) = 0, (6)
provided |z —z] is small enough, and that the exponent A(z', z) can be approached

by a series

u(z,z) =

A(',z) = Ai(z',z) + Az(z',z) 4 -, (7)
the first terms of iwmor are
Ay z) = \H " H(s)ds, (8a)
Aoz, z) = w \a H. T?y \H ’ Ecﬁi ds (86)
Az(z',z) = m\aa\ T&?Y\nu T&Qv.\aﬂ H(u)du &L ds+

’
z

H(s), \ ’ Ec_i _ \H " H(t)dt] ds, (8¢)

Aue’,z) = m\aa T.@.\M TSM\M T?y\a: Esi i i dart
1 \H m TE. \ ’ :Ea_ \H H Esi _ \H N Sei i et
+ %\M :E&,\M TS“\H_ Egi ﬁi \ Esi ds+

’

+ W\n TNE.\M E%L \H TS,\M H(u)du & ds. (84)
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which span the split 3-dimensiona] s; i
mple Lie algebr 21
tommutation relations e 2] e follows o the

[Mo, My] = *2My, (M, M_] = M,. (10)

Because 4 (z) belongs to the algebra:

H(z) = My + o(z)pr_, (11)

A(z' z) = ao(z’, 2) M, + ay(z’, z)M, + a_(z',z)M_, (12)

NMMHW n.oA.Mgsv HMM?‘HV =8a_(z,2) = 0. One cap easily write the propagation
I1X In terms of the ej = (a2 i
P € elgenvalues 44, q — (8§ +aya_)1/2 of the traceless matrix

QHN.nOmrn+\».m§vn\P (13)

_ (10
where J = Ao ~v - When a? + @+a_. < 0 then we replace cosh ¢ and sinha/a by
cosa and sin a/a, respectively, with o2 — —a?, According to [13] the determinant

o_M..Q equals :::Q.mm eXpected from the fact that this determinant ig the Wron-
Mr_mwm of the functions and v mentioned before. It is 5 remarkable property of
€ Magnus expansion that its truncation at any ord
Wecna Y order preserves the valye of the
mh_mrn E.E nw.iolaam [12-15] showed that the Magnus expansion provides a
mow approximation to A(z',z). In what follows we discuss some appealing prop-
erties of the first order approach, namely Az’ z) = 4, (#',z). In this case

r
W=0, ay =g'_ 4 h, a_ H\. 9(s)ds, (14)
In the neighborhood of a classica] turning point, 9(2) = 0, one has a- = q'(z)h2/2

2~ 1 3 o~ :
a? = Q.AHF \w. no&;.” 1, and sinha/q = provided |A| « 1. Therefore, the
abproximate eigenfunction Propagates in the correct way: $(z’) = Y(z) + (2 —

reference potentjal [25]. If we choose a constant reference potential g then a_ = qh
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and the present algorithm reduces to those proposed, by Canosa and Oliveira [26]
and Papageorgiou and Raptis [27]. The latter, based on the equations of the
transmission-line theory, yields remarkably accurate eigenvalues. [t ig therefore
sensible to expect even better results when the integral in Eq. (14) is exactly or
more accurately calculated.

From a practical point of view one replaces a boundary condition at infinity
¥(z — o00) = 0 by ¥(z*) = 0 for a large enough z* values. Therefore, if h =
€' —z < 1 and we choose z/ = g* so that ha. > 1, then cosh[(ha_)1/?] =
sinh[(ha_)/2 = exp(ha_)1/? and a_ = q(z)h which leads to the proper large —z
behavior y'(z)/y(z) = —g(z)1/2,

In addition to this, we expect the first-order approach to be remarkably accy-
rate for large = values when V(z — o0) = 0 because I (z) approaches a constant
matrix and the commutators in Egs. (8b)-(8d) vanish in that limit. For this reason
the exponential Propagation matrix method described here may be successful in
treating internuclear potential of diatomic molecules.

When V(z) is a relatively simple function of the coordinate as in the case of
polynomial and exponential potentials, one can easily calculate many terms in the
Magnus expansion. Because of the form of H (z) and the commutation relations
(10) the odd- and even-order terms contribute only to the oft-diagonal and diagonal

that when 4 = Ar+As + -+ Age, k > 1, the series ¥(z') = ¥(z) + v(z)h +
9(z)Y(z)h?/2 + ... is exactly reproduced up to terms of order h%+2 For the
sake of brevity the propagation matrices obtained from A=A, A=A+ Aq
and 4 = Ay + Ay + A, + A4 will be denoted FOPM, SOPM, and TOPM, (first-,

second-, and third-order propagation matrix), respectively.

ITII. RESULTS AND DISCUSSION

According to what we showed in the previous section, the Magnus expansion
serves with a remarkable approximation to the propagation matrix [J (z',z) pro-
vided |z’ — z| is small enough. The propagation matrix for large intervals is easily
constructed by successive application of the rule U(z”, z) = U(z", YU (', z).

For the sake of concreteness in what follows we assume that the boundary
conditions are P(~o00) = ¥(o0) = 0, which for practical purpose are replaced by
Y(zr) = ¥(zgr) = 0, where zL € 0 < zr. We choose an appropriate coordinate
value z¢ within the interval (xz,zr) and integrate the Schrédinger equation from

zL to zg and from zg to zgy along the lattice T, zL+h,.. .,z +mh = Tg, Tg+
hy...,zo+nh = zRr by means of the propagation matrices
n
Ulzo,zr) = [[ Ulzg - jh, 25 - jh + h), (15a)
g
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SsiinﬂSﬁiFﬁi\Ts, (15b)
=1
Because of the boundary conditions and that Pz
0) = Uz )0z =
= U(zy, Zr)®(zR) it follows that A &

[v(=, zR)dv(z, zL)/0z — v(z, z1)0v(z, ZR)[0z]p=z, = 0, (16)

where v(z, ZR), Ov(z, Hmw\ms. v(z, zr), and 0v(z, z1)/0z are elements of U(z, zR)
and U(z,z;) as wrosi In Egs. (5). The roots of Eq. (16) are the eigenval-
._MWM ow ga%nwﬂo%zmg equation. If y(z) js normalized so that ¥(zo) = 1, then
TR) = 1/v(zo, zp), Y(zL) = ~\eﬁao.&hv and ¥(z) = y(z v(Zg,zR) =
GAQ.HHV\CAN\.O.&N\V. ﬁ ’ hv\ A 0, va

Fig. 1. Logarithmic relative error L(z) =1

= log [[4(x) - Yapp()]/4a (z)] for the round-
state wavefunctjon of the harmonic oscillat lculat 1 4 m i
S e Or calculated with the first order propagation
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Fig. 2. Logarithmic relative error L(z) = log [¥(z) - ﬁ»ulnz\ﬁuvu?v_ for the ground-
state wavefunction of the harmonic oscillator calculated with the first, second and third

order propagation Matrices and A = 0.05.

to g = 0 is sufficient. Furthermore, the eigenvalues are determined by the roots
of
v(0, zg)[0v(z, ZR)/0z] =g = 0. 17

If we normalize the even and odd states so that 4(0) = 1 and ¥'(0) = 1, respectively,
then we can write them in terms of the elements of the propagation matrix as
¥(z) = v(z, zRr)/v(0,zR) and P(z) = e?&awv\ﬁ%cﬂﬁaxv\misucg respectively.
Among the exactly solvable models we choose the harmonic oscillator to test
the method because its potential, V(z) = 22 is simple enough to allow the
calculation of several terms of the Magnus expansion analytically. In figures 1
and 2 we compare the ground-state eigenfunction obtained approximatelly with
the boundary condition Yapp(0) = 1 and £ = 1, and the exact eigenfunction
Y(z) = exp(—z?/2). The plots of the logarithmic relative deviation log |[y(z) —
Yapp(2)]/¥(z)| show that the accuracy of the numerically computzd eigenfunction
icreases as h decreases (Fig. 1) or the number of terms in the Magnus expansion
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Table 1
Ground-state eigenvalue of the harmonic oscillator calculated with the first-order propa-
gation matrix and different & and ZR values.
TR h=0.1

h=0.05 h =0.025

3.0 1.0021076573921 1.001005719718]1 1.0007834086428
4.0 1.0016668366891 1.0004173145352 1.0001049742361
5.0 1.0016663882838 1.0004166493890 1.0001041657014
6.0 1.0016663882268 1.0004166492952 1.0001041655814
7.0 1.0016663882268 1.0004166492952 1.0001041655814

eral values of h and zg. We notice that the difference between the approximate
eigenvalue and the eXact one, £ = 1, js of order h2 and that the accuracy is not no-
ticeably improved by Enwmmmm:m ZR beynod zp = 5. Clearly, for larger eigenvalues
one has to consider larger values of zg.

In Table 2 we show the first six eigenvalues calculated with Zr = 10. One can
verify that the difference between the approximate eigenvalues obtained by means
of the kth-order Magnus expansion and the exact ones, En = 2n 41, is of order
h?*. We also notice that the FOPM error is energy independent, However, other
model potentials do not exhibit such a nice feature.

In order to evaluate the performance of the Propagation matrix method in
the study of vamaou&,_.onmSozm_ energies of diatomic molecules we apply it to
the Morse oscillator. The radia] part of the Schrédinger equation can be written
v'(z) = 9(2)¥(z) in which 9(z) = U(z)—E. The bound states satisfy the boundary
conditions 1(0) = %(00) = 0 and can therefore be treated as discussed before. For
comparison purpose we write the effective potential U(z) as

so that the Bohr radius ag and mw\ﬁwt:wv are respectively the units of length

0.2, zp = 8.0,and h = 0.01. The agreement between the results of our calculation
and the exact eigenvalues, available for J — 0, is remarkable. We expect that the
accuracy of the eigenvalyes with non zero rotational quantum number is similar
because we used the same convergence criterion (ie. stability when one increases

our FOPM resujts agree exactly with those of Papageorgiou and Raptis [27]. Our
SOPM energies are approximately as accurate as those of Kobeissj [23], one order of
magnitude more accurate than those of Hajj et al. [4] and two orders of magnitude
more accurate than those of Cooley [2]. Finally our TOPM results are in better
agreement with the exact eigenvalues than those mentioned above.
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Lowest eingenvalues of the
third- order Propagation matrices for z,

h

FOMP

harmonic o

Table 2

scillator calculated with the first-

=0,zr =10, and different valyes of h.

n=40
SOMP

TOMP

0.100 1.001666388226746 1.0600001112299251 _.coccoocc;mﬂmmw
0.050 1.000416649295219 1.000000069463037 H.cococccocowmuow
0.025 1.000104165581436 1.060000004340568 ~.occoocooocoo»om
n=1
0.100 3.001665832139755 3.000003333986899 wAOQOQOQOOAmonmc
0.050 3.000416614564720 3.000000208343637 w‘ccoococcaoqmmmw
0.025 3.000104163411168 3.000000013020995 w.occoocococo:ww
. n=2
0.100 5.001665275521265 5.000005555143052 m.ooccoos:qmwwm
0.050 5.000416579825945 5.000000347215961 u.ooooooocszmmw
0.025 5.00010416124077¢0 5.000000021701292 m.oooooococoomqu
n=3
0.100 .N.oc;m».:mwmwa.x 7.000007775766107 u.ococooowoch»ﬂ.
0.050 7.000416545078887 7.000000486080002 q.cooocococwmwaﬂw
0.025 7.000104159070244 7.000000030381460 q.ccooocococcmcmw
n=4
0.100 9.001664160683368 9.000009995854451 c.ococcocwwﬁcmmow
0.050 9.000416510323541 9.000000624935754 w.oocoooooommﬁmm
0.025 9.000104156899588 9.000000039061498 w.ccoooccoccomaw
no=5
0.100 11.001663602460729 11.000012215406464 -.ooooooo$mwm.~ﬂm
0.050 11.000416475559899 11.000000763783211 :.oooocoooowwcmom
0.025 11.000104154728803 11.000000047741408 :.ooccoococgwch

exponent A(z
Although this
preferable.

(z+h/2) within the i
+ h, z) will be given by Egs.
approach requires the use of

nterval (z,z 44
(12) and (14) with q_

» second- and

). The resulting
= hg(z + h/2).

-
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1 l~.~m.33§ummm3w3
2 l:m.ﬂmmmwmwmwmm:»w
3 l:m..wwmmmmwﬂcw:wm
exact I:m.qwmmwmwm_cwﬂmm

1 Immc.wmwmwwcqawwowmw
2 l;o.mmwAwmwma»w.ﬁmm
3 —160.283425629321983
exact —160.28342562935005

1 l:m.quwmqummAmAﬁ»
2 l:m.ﬂmccuwwwwcaaﬁm
3 I;N.wmocmowANmOAmNm
exact —142.78006034267675

1 lSm.mmqqmmw;m:mﬁ
2 —126.288441962582927
3 —126.28844249088582¢
exact —126.28844249101145

1 ~110.807963079963385
2 l:c.mcmmq:uwwowwﬂm
3 —110.808572074171305
exact —110.80857207435415

1 ~96.339881273700874
2 —96.340448404640197
3 —96.34044909246584]
exact —96.34044909270485

1 lmw.mmwu»mmwmAmAwww
2 —82.884072813152286
3 lmw.mm»oqwmhmmquwwwu
exact —82.88407354606355

1 lﬂc..nwmwmwoaw:wuow
2 lﬂo.hwwAAamﬂm;oﬁwm
3 lﬂc.AwmAAmAonwmmcm
exact lwo.AwwAAw»wAAwomm

—178.305284925476544
—178.306057346579050
—178.306057433805927

—159.807412114368549
—159.808143277319149
—159.80814353945121¢

—142.322221347803915
—142.322911278602185
—142.322911686955199

—125.84970774992882¢
—125.850356471043171
—125.850356997793219

—110.389863575645176
—110.390471106177972
—110.390471724530183

—95.942678471062490
—95.94324482694629¢
—95.94324551254749¢

—82.508139887978412
—82.508665082198600
~82.508665812334915

—70.086233694882317
~70.086717737720646
~70.086718490916164

Table 3 (Cont.)

N 0 J=2 J=3

1 —177.324343077462638 l~.\m.mmmmAAw~mMNmﬂAN

2 —177.325112977160980 l~ﬂw.m®wm~oaooqcmﬂom

3 —177.325113063846190 l_ﬂm.mawm~cAmmmomumm

1 lwum.mmﬂcwwwﬂwmcmmww I_m'\.km~mﬂwmm®mmmmwm

2 —158.861741795528077 luuﬂ.AmmwwwomAmwwmmm

3 —158.861742056143295 lumﬂ.hmwwwwwAwwwmmwm
2

1 —141.412215136104537 I~Ao.cmﬂﬂmwmcumwwm.wm

2 —141.412902991747627 I~Ac.omm~mhmmﬂwuwwwc~

3 —141.412903397728808 luAc.cmmN»Amwmumowmwm
3

1 —124.977933107718840 Immw.mmuo,ﬁmﬁﬂwwm»mmw

2 —124.978579940938608 lwmw.mwﬂﬂwcowwwmwﬁcm

3 —124.978580464559739 luww.mmmﬂmommmwwhmwﬁ
4

1 —109.558141827448123 IHOmAwNHmmmwwmmeHNﬂ

2 —109.558747630162724 lucm.www_uwmoﬁ:wwomm

3 —109.558748244697432 l-cm.wwwﬂmmzumwhwmwu
5

1 —95.152808748758670 lww‘wﬂwwammmwwwmcw

2 —95.153373507738873 —93.979694823016627

3 —95.153374188884343 lww.wﬂwmwm&wﬂhamocm
6

1 —81.761895095920529 Imo.mmwﬂwﬂuwmwwmwmﬂ

2 —81.762418793452762 lmo.mmAMAmAmﬂﬂmﬂAwh

3 —81.762419518573245 lmo.mmAMAwHﬂuwmmwwm
7

1 —69.385357776970358 Imm.w»mwm:wawwmumw

2 —69.385840391574348 —68.345731526490861

3 —69.385841139323821 lmm.wAmﬂwmwmuw®~wa

the method by means of a

ppropriate transformations that diagonalize H(z) [12-

-

16]. However, if one is mainly interested in bound states this modification seems
:m:mnmmmmc\.

There are other approaches that lead to a Propagation matrix with a deter-
minant of one. For Instance, we can write the bropagation matrix as ap infinite
product of exponential matrices as shown by Fer [29] and Wilcox [30]. The for-
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mer approach is more accurate but the latter is much simpler [31]. An alternative
strategy is based on the fact that the propagation matrix can be exactly written

Uz’ z) = exp[bo(z’, z) M) explby(z', z)M,) explb_(z', z)M_], (19)

where b, by and b_ are solutions of a system of first-order nonlinear ordinary
equations [21]. A straight forward calculation shows that

bo(z',2) = — In[Bu(z’, z)/9z'], by (2, z) = v(z’, 2)dv(x’, z)/8z'
b_(z',2) = [Ou(z’, z)/3z')/[dv(z’, z}/dz"],

from which it follows that the product form (18) can be used provided dv(z’, )94
> 0. This condition is always met if 4 = |z — z| is small enough because as

Ov(z',2) /82" = 1 at o/ = Z then this derivative should be positive in a neighbor-
hood of that point.
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