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barameters should not be taken as independent of the exciton transfer integrals
Jmn. Another alternative of the GSLE model 58503&:@ the small polaron
notion is shown to cause the small polaron renormalization of Jmn as well ag to
suppress the diagonal Haken-Strob] parameters v,,,,. These changes formally
reconcile the GSLE model with the Grover and Silbey theory.

L INTRODUCTION

In 1971, Grover and Silbey [1] published a microscopic theory of the exci-
ton transfer in molecular crystals which starts from a microscopic Hamiltonian

including the Hamiltonians of excitons, phonon bath as well as the exciton-phonon

For m:‘:@:n:& :oSmﬁwP we shall mostly mention Just excitons here.) For the sim-
plest case of 4 fully periodiec molecular chajn composed of one type of molecules

H= u..NmH + .\.&w\. + i\ Aﬂav
with ’
Her = MUASQMEQ = M Im-nal a,,
k m#¥n
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ice that here, we use the standard sign convention in the exponent in the
Mu:ownmmw transformation, which is opposite to that in [,
ou

Hpn = Y huwgblb,, (Ic)
q9

1 t p! v
e fk, q)a ap(b, + bl
H T W ( k+q%k(bg 7

= = TS hagalyan by 4 8L,

mn k

flk,q) = e~igam M w:t?nm::ml..wiil:v. (1d)

(As compared to the original paper, we assume just one <:u:_w$o-5_ .Eom@wmnﬂﬂm.
i i ition of the m-th molecu e, le. ais
inati m In exponents designates posi : lecule, i .
__:_“wwowo“mgi and m is integer.) Their theory is based on mo:<.mm5= of equations
ow. motion (differential equations with respect to time) for quantities

Gnm (1) = (vaces | Ao( AL () Am (£)) A} jvac.s) )

which we are going to argue below to correspond to matrix .m_wnzm:nm P::AMV HOm
i i i ix. In (2), [vac,s) is the exciton vacuum state,
the single-exciton density matrix ) Is the o 30
i i honons in the chain without exci on , e.g.,
(I---1) designates averaging over p . . . i and, <.
i ton at site n. (Relation of dre
Al creates a dressed (i.e. mimz-vo_mn.oa_nv exciton at
mxan:oz operators like A} to bare-exciton like a}, is given by standard mo~5=_mmomm
the canonical transformation theory - see, e.g., Q-mv ._vm“om,rw mﬁwnﬂwwmoosmﬂﬁwﬂwo:m
i i 1tti technical details, :
able approximations and omitting unnecessary i < €q
of BOMM: read for the nearest neighbour hopping and the local exciton-phonon
interaction (Jp,_, = Jmnt1)

M&MQ:QQV = WM.\IR\.:.T_.EQV + Q:IH«SQV - Q:.§+~Qv - Q:_-:l;u:

~\ 2
=g wm N1 ORGam(t) = Gat1m41(Obnm — a1 ey ()6,
1

|&=.3+~Q3: - %:.SI~Q5=_. va

Here designates the corresponding quantity .m:mq the mam:-.to_m:o: Sm:m“”woﬂ
tion and 4, (¢) describes the influence of the _m.;n_am mnno.:::oaw:o: Mo m%mémwm s
of the small-polaronic exciton after its hop in p.rm nrm:.w (for intro :MA__Ao: . :m.m
There are two basic features of these equations Sr:wr we should like 3w _mo;m
here. First, the second (bath-assisted) channel of the excitonic polaron transfer (

131




term with the second Square bracket on the right hand side of (3)) is proportiona|
to J2, ie. also to J2 because [1)

In = Jp exp[-N -1 SIxRa - cos(kan)) coth(Bhuwy /2)],
k

(B is the reciprocal temperature in energy units.)

Second, in (3), there is (in contrast to the theories mentioned below) the same
coeflicient 2(J /1)1 (1) for both M =nand m # nin front of the second square
bracket in (3). In terms of the Stochastic Liouville Equation (SLE known in 5

(GSLE) models discussed below, the latter characteristic feature can be expressed
as a lack of the bath-assisted local energy (i.e. m:m-&wmozmc fluctuation term Yetivsi
usually entering (and often believed to be dominant) the transversal relaxation
(damping of the site-off-diagonal elements of the single-exciton density matrix),
These two characteristic features do not correspond to older theories based
on the idea that the thermodynamic bath can be wel] substituted by ap external
scalar stochastic botential with prescribed statistical properties (usually forming a
Gaussian and d-correlated Markovian Process) over which the single-exciton den-
Sity matrix is thep implicitly averaged. This idea goes back to the beginning of
sixtieth [2,3] but has been extensively used only after a classica) paper by Haken
and Strobl [4] (see, e.g., review (5] for many other references) introducing a simple
and physically transparent Parametrization (the Haken-Strob) parametrization or
the mmwmu-mnnoz-mmmumrmw model). In spite of differences this two descriptions had
been long time taken as formally identica] [5, 19, 20]. Without necessary invok-
ing this barametrization, the approach is also often called the Stochastic Liouville

2 n(t) = 2 (Hee, p(1)),,,

+28mp MQE«» ?EAD ~ Pmm Q:

lﬁ - QE:VMMNJBS:QV - Mq«i:b:i?& AUQV
with
ﬁHM\VwSUQSSAT M Yom. ﬁms
P p(#m)

(In fact, because of the periodicity of the problem, all Ymn depend just on the
relative position ™ —n; we do not, however, write Tm-n instead so as to avoid
possible confusion with, e.g. the Grover and Silbey parameter 71(t) - see above.)

Provided that one neglects all J,,_, and Ymn for jm—n| > 1, (5) acquires the same
structure as (3) provided that
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e one can identify

J .\n &.\1. A@Dv

]

J
Tmmil & Ymomil R Amvwf (), (60)

e and set Ymm = 0.

identification of Ym,mt1 With 3, 4y s compatible with mtvwm.vﬁsw.
MWMMGWWQMJ: [1] (compare the text cm_o.s. Eq. (33) of the O~o<a~. m:.m m:w@*ﬂm
work). Also (6a) could be explained realizing that vm.nmcm.m Om. m:vmsn:n._os of t m
honon bath by the stochastic field, the Stochastic Liouville Equation _.:omm
real vn describe the polaron effects (which, on the other hand, could be m_.hmmn_m:n;
nwaw_omb some specific situations). The necessity to neglect the coefficient YVirir
Mmﬂ_w”mzzw assumed and argued to be dominating over m:. onr.mw Ymn, m # n) and
roportionality of v, 4 {steming in the usual R:ﬁimSo: Just from the No?:-
Mm_ field) to J2 is, however, a relevant problem which has already been mentioned
above and which is the motivation of the present paper. One mmoc_m add here that
inspite of (6a-b) as well as tiny technical m.:mmnmunmm in ;.m %:59.0:_ the memm
and Silbey theory [1] is currently understood to be physically equivalent to
Eld—.um:.:& explanation could be given by the observation nrmn. the Q~o<m~..mm:_ M:-
bey theory [1] is based on the local linear (in .::w vro:.o: n.womrow and m.:Er:mSo:
operators b! and b) exciton-phonon interaction mmB._:oEm: H - Adding, eg,a
quadratic term should add {(to (1)) a term corresponding to vy, in .nro mnOnrmmSo
Liouville Equation model. We do not believe, :osﬁﬁwr. that this is the mmz_::M
explanation. The point is that using the same mm:::nz.ms (la-d) as m_uwﬂﬁww m.ﬂ
Silbey [1] (i.e. with just the linear exciton-phonon no:EEm.v_ one can fully keep ﬁ e
quantum character of the phonon bath but mo:os.ogaas_mm the way of reasoning
which is typical of the Stochastic Liouville ma:.w:o: Soﬁ_&.. Hr_m mwtnomnv m.wma
published in [8] is sometimes called the Generalized mﬂo@mma‘_n Liouville mncwrws
model. For nen-periodic systems, it provides a generalization of the Stochastic

temperatures. In the Haken-Strob] vmnmEoSme.:oz m.:m in our model, it, however,
fully reproduces Egs. (5) including the crucial (diagonal) parameter e Amm,m
below). So, to our opinion, the problem is more complicated and we hope to submit
at least a contribution to its solution here.

II. CONNECTION BETWEEN DENSITY MATRIX
AND GROVER & SILBEY PARAMETERS

In this Section, we first give arguments why the Grover and Silbey’s parameters
Ynm(t) as introduced in (2) are currently [5-7] but incorrectly Amm‘mroiu then
below) understood to coincide with matrix elements Pmn(t) of the mEm_m.-mxo;o:
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As already mentioned in the Introduction, Grover and Silbey [1] work with
small polaron (clothed exciton) quantities, i.e. apply first the small polaron (canop.
ical) transformation to relevant physical operators. So, e.g., the new electron an-
nihilation and phonon annihilation time-independent operators read (again, notjce
the difference in the sign convention)

An = e Sq,e5

)

By = mlmSmm Ad
with
S = 2-5Mxm=&.§£ —b_). ®)
nk

Now, we could rewrite the Grover and Silbey definition (2) as
Gnm(l) = (AL(1) Am (1) 9)

where the averaging, using standard formulae of the theory of canonical transfor-
mations,

() = Tr(ppor - - ),

Allotees) vacee Ay g 22210
Prol = Aglvacez)(vac.|4g —S 4~ F"
Trppe™? 2 hurBlB,
~BY Ruwgblh,
s € L .
=e mnm_ennn«v?naau\._no ® Jmm = e Sp(0)eS. (10)
H,Ji. mluMUr wib, by
Clearly, p(0) is the initial density matrix of the system corresponding to the sity-
ation that one exciton is created at time ¢ = 0 in the otherwise excitonless chain
with a thermal distribution of the phonons. Consequently,

Grm(t) = Tr(e™  p(0)e e~ Sei g - it ys

.m...wma_.x“n.:m|u...§omv = Tr(e” mSRSm miﬂnmasv
= Tr(p(t)alam) = pon (). (1)
This formally makes our proof of the usual (see e.g. [6,7]) but incorrect (as we are
going to show below) assertion that Grover and Silbey’s quantities H,,,,(¢) corre-
spond to the usua) matrix elements of the single-exciton density matrix complete.
A word of caution is, however, necessary here. In the above proof, we have
assumed that the proper definition of the meaning of, e.g., the Grover and Silbey’s
symbol A,,(t) (the dressed-exciton annihilation operator at sjte m in the Heisenberg
representation) is v
An(t) = mlmowiun‘zml FHieS

= ety o~ it (12a)

with ~ ) :
H=e MHeS =7, 4 Hpn + H' (12b)
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H = — M 97 hwg AL A, (12¢)

This and only this is, to our opinion, the proper form which is compatible with
the usual Schrédinger form of the quantum mechanics as far as one really assumes
that the canonical transformation has been Emm*a. On the A.unrma hand, from, e.g.,
Eq. (20) of [1], it can be seen that Grover and Silbey used (instead of (12a-b)) the
on . ]
definiti Ant) = oa..g:\_:uml - 1)
(The same point can be found in a previous work of the same authors E: This
would be, to our opinion, generally incorrect in the canonical transformation con-
text and in this case, it could really serve as the first reason why one should be
careful when comparing results of the Grover and Silbey’s [1] with those of oﬁa&
theories. On the other hand, this only means that Grover and Silbey do not in

work with the dressed-exciton (small excitonic polaron) creation and m::?:m:o.:
operators A! and A, known from the canonical transformation theory, but nr.ﬂa
wave functions and other operators like the Hamiltonian are ‘untransformed with
H being only rewritten in terms of the dressed-exciton operators. Thus, for the
same Hamiltonian % as in (1a),

H= .\.Nu:l + ﬂNE} + \»&-.an_ Ammv
Hpot = Y E(k)AL As,
k
1 n ikan
k) = = M% (X2 [*hw, + M\,m 5 (0] 1 Om), (1f)
Hins = F wn.n?:l»,ﬂv.\:l:%@:ﬁ@‘: - AQH—@SVV\,*M\AT = MU ST\“M\::
N n#m.k k! kk?

On = exp[-N"Y2 3" x-"(Bl - B_,)]. (1g)
3
(Here, we set 97" = 0,m # nin accordance with [1]; for \\.NE, see (12c) above.) So,
in particular and instead of (9-10),
Grm(t) = Tr(p(0) AL (1) Arn(2))
= Tr(p(t)A} Arm)

= HaAvam..mam.uSm.wv
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= T lelam + lalan, 51+ Llialan, 5], 5+ . ) (14)
with ,
EQV = mmxabmcvaﬁ K Ht

)

EAOV = \Amhoxae. va

density matrix Pmn(t) never in general coincide. Thus, contrary to (11), Q.::S
given by (14) does not (irrespective of the similarities of (3) and (5) as well ag
coincidence of the site-diagonal elements) represent the mn-element of the bare.
exciton but rather that of the dressed-exciton (or exciton-polaron) density matrix,

pretation of basic quantities of the Grover and Silbey theory [5,6,7], not all the
discrepancies between (3) and (5) can be ascribeq to it. Traditionally, as in [6],
one could start here from the time-convolution Generalized Master Equations (TC-
GME) based on the Nakajima and Zwanzig identity [10-12)]

m Dj(t) = ~iDZ, (1) Dj(e)
_ \ DE\(t) exp_([~i(1 - D) \ L1(r)d7)(1 - DY&y(r)Dj(r) dr

—~iDE1(t) exp_[—i \“ ‘- D)L (r) dr(1 — D)3(to). (16)

Equivalent from the physical point of view but a bit simpler way is to work with
the time-convolutionless Generalized Master Equations AHOF-QZ@ based on, eg.,
the Shibata, Hashitsume, Takahashj and Shingu identity [13,14]

%b%v = —iDL(t)[1 + ﬁ.\;“ G(t, Jc = D)Ly(r)DG(t, 7)dr]~!

DAt +G(t, to)(1 - DYj(t)]. (17)
Here -~ designates the interaction picture, j.e.
A(t) = mw...icﬁl;vbml FMo(t~1q) - mﬂ.htevaQv_ (18a)
Li(t) = m,.n%-énai.s?ﬁ (18b)
1
Loy = Mﬁio_.;‘ (18¢)
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and I

L, = m?:.._ (184d)

where

H =Ho+H, (19)

is so far arbitrary way of splitting our Hamiltonian  in (1) into a "perturbed
is s |
and ”unperturbed” part. Finally,

Gt,r) = @61?\* L£1(s)ds] (20a}

and ; i
Glt, 7y = exp, [~ \ (1 D)f:(s)ds]. (208)

in {15].
hat follows, we partly proceed as in | ‘
. imwsw:S let us specify our projector D(= D?). We use the Argyres axd Kelley

16
form 119 DA =(TrpA)®e®, Trpef =1 (21)

where ¢® is otherwise so far undetermined ovm::.on‘m: n.ro Hilbert mvm_no M,mr the
reservoir (phonons); Trg - - - designates the trace in this Hilbert space only. Then

m- .w..hgT:_v
7 DA(t) = D= Ao g Rcv

a
= efbest=t)[ip, 4 %E\VS. (22)
Here, we have introduced £, as

whc = h«ﬂb. Awwv

For the initial condition, we will always assume that initially, the total exciton-
reservoir (phonon) density matrix is separable

p(to) = ps(to) ® pr(to),

= = 4
Ps(t) = pes(t) = Trrp(t),  pr(t) = ppa(l) = Trsp(t). (24)
Here, Trs - - - designates the trace in the Hilbert space of ?m system Amxn;ocv.os__%
As swm assume only one exciton in the system, p,, is simultaneously the single-
(bare-)exciton density matrix. Then, taking in (21)

o™ = pr(to), (25)
(1= D)ito) = (1 = D)p(to) = 0 (26)
and (16) as well as (17) become more simple. .
Now, let us make (19) more specific choosing
Ho = Hex + Hpp,
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Hi=H'. @J
Then (23) applies with
i

hmﬂ = Wﬁimﬂw N u AM@V

1

and in terms localized single-exciton states [m) = m.w.?aamnv_ Eq. (17) reads after
taking Trp

a i
M\cs: (t) = IMT&Q?RN:S: + MUME:EA? “QVBEQV. Awmv
rg

i

Ennpe(t, tg) = l.Mum,&%-;SD (o[ i\“ 9@, 7)1 - D)Ei(r) DG, It

F7173N

tCo(t—t
“Det%ol a:.:t.:t%s?,&w

0
~ MU_.H_C - bv\« — Quhz;mzir.:t%simmw +0(L3). (30)

T3\

Here the ingjces ™y, ny etc. are related to the exciton-phonon states

my) = lm{y =ql % Ty vac
Imp) = [m{p, )y s@ Tt Ce)lvace, ). (31)

Liouville Equation approach except for some lacking symmetries [13]. Usually, as
we shall also do henceforth, one neglects the time-dependence of Emnpe(t,to). This
may become wel| Justified provided that the dynamics of the bath is much faster
than that of the system (which js, by the way, one of the basic assumptions of the
standard Stochastic Lioyville Equation mode] [5]). Starting from (14) as in [8], the
same physica) assumption would Justify the Markov approximation yielding then
the same set of equations,

In the Haken-Strob) [4] barametrization, we set (see [8] or [15])

MSSSS == M ma:..::: Awwmv
n(#m)

mss:: = M\V\Szg m wm n, A..wwwv

ms:s: - MAQ:: + ‘\ﬂav, m wm n, AMMGV

ms::wz = M\w:.:: m wm n Aww&v

and neglect all other =’s. (Here (32d) and (32b) serve as a definition of ,,,, and Ymn
for m # n while (32¢) may serve ag a definition of Ymm ). Invoking the symmetry
of our model (periodic monomolecular chain), one rederives (5a-b).

Now, we can start our discussion of the SLE model from the point of view of the
GSLE approach. In order to make a hint from the very beginning, let us mention
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t in the SLE model, the stochastic potential field substituting the phonons may
e t for the above limitations (Gaussian and é-correlated Markov character),
. mxn%_mmm arbitrary. This makes the Haken-Strobl parameters v, and ¥,
kel Mnmoq their definiteness and some symmetry relations) practically arbitrary in
Amxommmm model. However, here we want to argue that, in order to keep a nozsm.oSo.z
“mmr the original notion of the reservoir G.M.w Eow the GSLE model preserving it

se limitations are not sufficient,.
" mmw\mwnmmmmwﬂamm” M_MSEEQ let us mention that in the SLE model (Egs. (2.13)

and (2.12) of [5])
1
SLE — A(m, n, m,n) = 3 \A>S=SV\~:SQVV dt

Tmn = Ymn

1 -
= mgsiov:n‘wo . (33)
Here (- - -) designates the statistical averaging over the above stochastic field Sr:.m
hmn(t) are matrix elements of this field between two _Onmzmm.m states of the exci-
_._ow_m_z h¥ . is then the corresponding Fourier component. So, in order to keep the
oonnmmv‘mw%sno with the original microscopic Hamiltonian (1), one should take as

counterparts ; o _
D hnm(t)ahan ~ efMolt=t0)py, o Hoi=to

mn
1 ‘o 1 —ik1a(n’'~n)+ikza(m’—m) k1)~ J (ka))t
= Eoedon T o ey et @
mn

7 i kika
Jbgemiut 4 plent, (34)

Here we use the property that Wy = w_gq and introduce J(k) = Yon s exp(—~ika(m—
n)). So, extracting hnm(t), we get

(ot 1 ~ikya(n'—n)+iksa(m’'—m
:milm\l_aMUMﬁ_aaE:deUa el el v

n'm’ &a&u

(b 2m8(w — g +(J (k1) = J (k2))/B) +bL, - 276(w 4w, +(J (k1) = J(k2))/R)). (35)

Consequently, for J,,, = 0, h%=9 should be taken as zero, rmu Tmn — 0 when
Jmn — 0 as a consequence of the fact that 9355 =0 As.:wwm is no interaction of the
exciton with a homogeneous shift of the crystal). ‘E.:m Sm.: no:d.mwoa% n.o (but
does not imply) the proportionality of v's to J2 Boufo:mm in the introduction.

Now, let us return to the central point here, i.e. how the dependence of
the Haken-Strobl parameters yn, on Jn, follows from the analogy between the
SLE and GSLE models. If we really do identify the .\-_x:m:.:maﬂ.m ?omd these two
approaches, we can start from (32b-c). In the Ffmma order in the mxn_;o:-_uro:o:
coupling (compatible with the area of applicability of the standard SLE), we get
for both m # n and m = n [13]

h
— GSLE | T 2(mn 2
Ymn = Qﬂm: ~ N MEQ_.Q«

q
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10(em ~ €, + liwg)ng(hw,) + H+d(em ~ ¢, - hwg)ng(hw, )] (36)

provided that ope can set all J,,,, zero. For general case see (39) below. In Aumv,
ng(z) = ?xva&l_vl i1s the Bose-Einstein distribution function and Em designate
the local exciton energies in the lattice. In our periodic chain, all these €m are equa)
(we have already set them zero in our starting mm:::oo:_.wi:v. Thus, from (36)

TYmn — O. .\5: —* O_ A..w.wv

while for Imn # 0, Ymn result in general nonzero {13]). This corresponds to the
Grover and Silbey result {1]. At the end, let us just mentjon that in the GSLE
(and, similarly, SLE) model, we (on the contrary) observe no direct, correspondence
of ¥, and Ynm as in the Grover and Silbey equations (3).

IV. PROBLEM OF THE SITE-DIAGONAL HAKEN-STROBIL
PARAMETER.

In the F?oa:nnmo:_ we have mentioned also another feature which seems to
distinguish betweep the Grover & Silbey and SLE models appreciably. The poin
is that in the usua] SLE as well as the version of the GSLE model discussed in
the last Section, there is in general nonzero site-diagonal element Ymm which is
on the other hand fully lacking in the Grover and Silbey theory [1] (compare (3)).
We have already mentioned that, to our opinion and in contrast with a standard
explanation, this is not owing to the linear (in the lattice-point &mEmSEmanmv
exciton-phonon coupling Hamiltonian ' of the Grover and Silbey theory. The
reason is that for the same Hamiltonian, GSLE (see [8,15] or the previous Section)
yields 5,,,, nonzero,

Before presenting our explanation of this Eomnmmazm observation, let us men-
tion that the presence of the positive site-diagonal v,,,..’s in the SLE seems to
correspond to the usyal (and often uncritically accepted) inequality between the
longitudinal and transversal relaxation times T} and T,

Ty >057T, (38)

The reason is that Ymm (which are always non-negative) contribute to the damping
of the oft-diagonal elements Pmn but do not directly influence the time development
of the diagonal elements in (5a). Really, in the Haken-Strob] [4] parametrization
of SLE and with zero exciton transfer integral, (38) is well fulfilled but turns to
equality upon setting v,,m zero. In words, one can interpret (38) by saying that each
act of the longitudinal relaxation (hop) automatically destroys the phase coherence.
One can arrive at (38) also realizing that there are in general mechanisms (types
of the exciton-phonon coupling in our situation) which yield no longitudinal but

or dressed-exciton density matrix.)
Relation (38) is often believed to be universal; at least on the level of the [owest
order perturbation theory, the arguments leading to (38) seem to be undoubted.
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should mention that, e.g., the GSLE is by no means in
On ::_w pﬂ“,ME*MMMMEM_“MMMM“W.er5:2_ Wam:mrmnmmﬁ al [17-19] have recently proved
genars der specific conditions (lying, however, beyond the range Om.::ao:—vnwa
%mf _:MV._; of the standard SLE model), relation (38) might become violated. So,
mtvrww:__& me (having in mind the lack of the corresponding term in ﬁ.&o Grover
OMM Mzovm% theory) whether the presence of Ynm’s in the GSLE as above is a matter
and ¢

i if it i i > arbitrariness involved.
ssity or if it is owing to, e.g., some ar :
of :mmmﬁ mﬂmsmn to the second alternative is confirmative. In order n.o mr.oé that,
let us first of all quote the lowest order result (in H; but exact to the infinite order
e

in all other parameters included in M, possibly like Jmn)

Ymm =~ .I—lu \o ds MU:\ILEFS.\A\»NHVSFS:?V + Q&CSSS:@*&LSFE: Am:ﬁ_\.
2 Awwv

(see [8,15]). Here, for simplicity, we have taken e}, = 8,,p,. Assume now that
instead of (27} we choose

—00 v

\\.Nc = imﬂ + iﬁ}

1 mm t
e 9q " Tuwg(bg +62,),

! i . 40)
5 97 "hwy(by + 81 ). (
D P,
Then, from the very difinition of H;, we find that
Ymm = 0, AA_V
but
) Ymn £ 0 (42)

in (39). This disagrees with the standard SLE as well as the version of the Omm_m
mentioned in the previous Section. On the other hand, ‘; formally fully corresponds
to the Grover and Silbey [1] result (3). Detailed inspection shows, roswm,\mﬁ that our
choice (40) does not in fact solve the problem of the no:mmwozmm:aw with the Q~M.<m~
and Silbey theory. The point is that in this way, We never obtain corresponding
results for quantity +, (t) entering (3) and, in particular, the proportionality (6b)
above (as H, from (40) is fully neglected in (1])- In order to achieve that, we have
to resort to a new form of projector

c.:nMU,E\:_ ...&NE_E?
kik,

= MU.‘S.A\AS .- ‘\ﬂﬁvlwdbc\ua_
mn

mlni.:.

TepnePHrn " 5

It

Po = [vaces)(vace| @
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C_mm‘l.? Dp(t) isthen a linear combination of independent operators Al py A, With
coeflicients Q:SAC = ,?C%S\C.\#sv (see (14)) which are nothing but the mn-
elements of the ?Em_m-tmaan_mv dressed exciton density matrix. In particular, i

(14), we choose
Ho = \N&E& + ﬂwh\:
\\&~ = \\,&..-: o J

(49)

(see (le-g) above). Here, in correspondence with [1], we set 97" =0, m#£n. Then

J 0
2 A0 A2 G (0) = Y a1 o, g7 Tr(Amp(t) A1)

= 2 A A Y A i 50 4 @
N. ’
= Mﬁgifﬂisﬁg%v:t
mn
i B g i |
lu«&,lo.w\vl. t'{t=ig
+Tr(ame™ ¥ Mo (t-20), 3¢ SekMpor (2 :nhd. (45)
Here, as compared to (1f) and (1b),
Hypor = 3 " &(k)ala, (46)

k

Is the renormalized (ie. including the polaron shifts and renormalization of J - gee

(4)) free bare exciton Hamiltonjan. Thus

d
2 A0 A5G (1)

7
= M \Amabc\*: AIWH—A\»ET&?&. EQV._\AMV

+MiﬂEa.?e_%_GE_&?;:& ,:?Wl?:
rs & *

Nn 7 + ’ )
= M\ag S?deis?% pU]AL) + M?-;x..?;:i: Tr(A, chf
(47)
Here,|m) = al,[vac.;) ete. and Ly = #Mo, -], Term Tr(A, 2 A1) on the

right hand side can be deduced from (17). Assuming that the ip;
disappears (which follows in our case from (43) when p(0) = Al

dp
wﬂﬂﬁ\*w MNI\A.MV
= IEJA\?AN;C: + s.‘\~ G(t, m)(1 - DVN;\JDQF 7)dr]
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tial condition term
PoAg) we obtain

“'Dp(1))Al)

5 Muei;m;:\n: - EDE%&E&KS “Tr(4pp4L).  (48)
pq to

Thus, combining (47) and (48), we obtain

mw'.mw.c\:w:Qv = IWQ mc?bﬁzvﬂz

t
|Muﬁiina-_.&:aé\ (L= D)Li(r)dr 4l poA,) AL)G, (2). (49)
rq to

This equation has the structure of Eq. (3), i.e. of the final result of Grover and
Silbey [1]. Now, because of the definition of ¥, in (44), one can easily reveal
that in (49), the second term on the right hand side (leading to ym, - as well as
Fmn-coefficients in the Haken-Strobl parametrization) is really proportional to J2.
Finally, because of the same algebraic structure of the right hand side of (49) and
that in (30), our definition (39) again takes place in the above parametrization
scheme. Here, however, ¥, is given as in (44), i.e. it has no diagonal elements.
Thus, ¥mm = 0, in a full correspondence with the Grover and Silbey theory [1]. De-
tailed calculations based on projector (43) showing that in detajl will be published
elsewhere.

So, seemingly, we have got that rather some ambiguity (choice (43) with (44))
instead of (21) with (27)) is responsible for disappearance of the diagonal Haken-
Strobl parameters ,,,,. This might lead to a seemingly provocative question: If in
one (of two otherwise physically equivalent) set of equations, there are parameters
Ymm While in the second set (derived in a slightly different way for the same quanti.

e.g., molecules is to relaxed or unrelaxed states. For the latter problem, the answer
is that we get the same result within the accuracy given by the energy uncertainty
(including shift as well as the broadening) of energies of the unrelaxed states. If
this analogy really applies here, one should be careful ascribing any deep physical
Mmeaning to these site-diagonal Haken-Strobl parameters v,,,, .

The real situation is, however, not so unclear as it might seem. Five sentences
back, we have stressed the words the same quantities. In fact, we want to argue
that the same (independent of the choice (43) with (44) instead of (21) with (27))
Quantities in the two alternative formulations of the GSLE model are Jjust the
diagonal elements Prm(l) = Pp(t) (see (14) above) yielding the probabilities of
m:&:m the (bare as well as dressed) exciton at individual sites. For these quantities,
:.5 above provocative question is probably meaningful. On the other hand, the off-

the bare-exciton density matrix while with (43) and (44), we are led to the dressed-
€Xciton density matrix, i.e. to the Grover and Sitbey parameters Grnm(t). This
then fully explains all the analogies of the above second alternative of the GSLE
Model (with the choice (43) and (44)) and the theory by Grover and Silbey [1].
(At this point, similarities with infinite order theory by Cipek and Barvik [20]
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also suggesting the absence of the diagonal elements Ymm are worth mentioning
though this theory is formulated Just for the diagonal elements of the bare- as wel]
as dressed-exciton density matrix.) Simultaneously, this also explains the above
differences between the SLE (or the first alternative of GSLE) and the Grover and
Silbey theory {1.

At the end, the last and cardinal question remains: Which of the two groups
of theories (Grover&Silbe » GSLE with choice (43) and (44) or [20] without any
Ymm but with the polaron renormalization (4) on one hand or the traditional SLE
or GSLE with choice (21) with (27) yielding non-negligible v,,,, but no polaron

(This is important when ascribing any physical meaning to Y, ’s or the polaron
renormalization (4).) Unfortunately, even formally identical approximations can
yield different results in different schemes. So, with approximations, the answer
must be looked for each case separately. For instance, preferentia) character of the
Grover&Silbey-like theories in case of a strong diagonal exciton-phonon coupling
is likely while in the opposite situation, the opposite is true.
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