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A simple and accurate method for solving the time-independent one-dimen-
sional Schrodinger equation is proposed. The procedure is based on a Taylor
expansion of the propagation matrix for the eigenfunctions, which allows one
improve accuracy systematically. As the algorithmm only requires one-step cal-
culations, it is suitable for small personal computers. Results are shown for
anharmonic oscillators which are customarily used as models to study the vi-
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boundary conditions is discussed.

I. INTRODUCTION

It is nowadays possible to solve the time-independent Schrodinger equation in
one-dimension, numerically with the desired degree of accuracy. However, there
has lately been an increasing interest in algorithms that are suitable for micro-
computer calculations [1] (and references therein). Most of such procedures are
based on replacing the second derivative D*(D = d/dz) by the operator

8 = h~2(e? 4 7P —2), (1)
which can be expanded as
2 2 > \.MC.IN L3
6 = D° +2 — D 2
b 2 (25)! 2)

P
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When D? is replaced by 67 in the eigenvalue equation
¥ (@) = q@)¥(=), e(z) = V() - E, @)

a orqwo..:w:: recurrence relation is obtained with an error of O(h?) [1]. The accu-
racy is improved by choosing a set of numbers €1,C2, ...,y 50 that

MU &.m.w: = D? + O(h?). (4)

i=1
Even more accurate algorithms are developed by means of the linear operator

k
L= )" (aje*P — h2; 24D, | (5)

I=—k

in which the numbers a; and b; are determined so that L(fi) = 0 for a properly
chosen set of functions {f;, fa, .-} [2]. The price one has to pay to increase accuracy
in these ways is that the eigenvalue equation becomes a multi-step algorithm which
demands more computation time and memory space and is not so easily tractable
by means of small personal computers. . :

Killingbeck [3] proposed w.meEo_. alternative method that consists of replacing
D* by ¢(z)? in Eq. (2). This substitution is justified by first-order perturbation
theory and leads to a two-step algorithm with an error of only O(h%).

In this paper we present a simple and highly accurate one-step integration
procedure based on the propagation matrix [3-5]. It is wellknown that the wave-
function ¥(x) and its first derivative ¥“(z) propagate according to

P(z + h) = T(x + h, 2)®(x), {6)
where
_ [ ¥(=)
eﬁhv h KKA..HV ) A‘Nv

and T(z + I, z) is the 2 x 2 propagator matrix, which for our purposes is most
conveniently written

(u(x,h) oz, 3

T(z+h,z)= du(r,h)  Bu(r,h) |- 8)
oh oh

Here the functions u and v are two linearly independent solutions of the differential
equation

8wz, h
,Qm-n ) = q(z + h)w(z, h), (9)
with the initial conditions
duv(x, 1 .
w(z,0) = du(x, L?No” 1, u(z,0) = E?ucﬂc. (10)

oh dh

Let us assume for the moment that acceptable approximations to u(z, h) and v(z, k)
are available for all x values. The solutions to the differential equation (3) can be
propagated forward from 0 to x5 > 0 and backward [rom 0 to z1, < 0 according to

T(zr,0)=T(xr,zr — h)...T(2h, h)T(h,0), (11a)

T(zp,0) =T(xp,zr +h)...T(=2h,—h)T(-h,0), (11d)

respectively. Therefore, boundary conditions at z;, and xy are easily expressed in
terms of the matrix elements of T(z g, 0) and T(z,0). For instance, if

Y(zr) = Y(xL) =0
we have from Eq. (8) that
uw(zp,0)v(zL,0) — v(z g, 0)u(z,0) = 0. (12)

The problem is greatly simplified when the potential V(z) is parity invariant and
T = —zp because in this case the solutions of the eigenvalue equation have definite
parity so that ¥'(x = 0) = 0 or ¥(z = 0) = 0 when they are even or odd,
respectively. As a result it is sufficient to propagate the solutions in the forward
direction and the eigenvalues are given by the roots of u(zg,0)v(zg,0) = 0.

In order to treat problems with boundary conditions at infinity one chooses
sufficiently large values of —z and zg so that the change of the results is smaller
than a prescribed tolerance when the interval g — 2y is increased. The effect of the
approximate finite boundary conditions is diminished by using the correct asymp-
totic form of the wavefunction. The logarithmic derivative f(z) = —¢'(z)/¥(z)
satisfies the Riccati equation f'(x)— f(z)? +¢(x) = 0. An approximate solution of
the latter equation for large z values is f(x) = ¢(z)/? 4 ¢'(x)/[49(z)]). Therefore,
more accurate results are expected if the Dirichlet boundary conditions ¥(z) = 0
at x = zr and z = z g are replaced by

¥'(2) = —{a()""* + ¢'(z)/[44()]} ¥(z)- (13)

The algorithm developed here is particularly suitable for this improvement because
the wavefunction and its first derivative are treated on equal footing. The functions
u(xr, h) and v{z, h) can be approximated in many different ways. One may use, for
example, perturbation theory [3,4] or power serics expansions [5). Because in our
opinion the latler possibility is simpler and has not been fully exploited, we discuss
it here.

If 4(2) analylic at x, we can write

x4+ h) =) i(a)hd, (14)

j=0



where the Taylor coefficients ¥;(x) can be obtained by successive differentiation
of the Schrédinger equation. All such cocfficients are linear combinations of ¥(z)
and QH\AHV_ and contain derivatives of ¢(z). In ref. [5] q(x) was approximated
by s linear function of z, so that the derivatives of order greater than one vanish.
Besides, part of the series for /(z) and ¥’(x) in (14) was exactly summed obtaining
w. propagator which is exact for a constant potential and accurate to order h!° for a
:.:ou_. potential. Here we expect to obtain more accurate results by simply adding
higher derivatives of the potential function. In this way the potential function is
more adequately described within each interval (z,z + h) allowing the use of a

larger step size h without loss of of accuracy. More precisely, if ¢(x) is analytic at
z, we write

1D = @, e h)= Y @, (15)

j=0 . ji=0

SEnr when substituted into Eq. (9) lead to the following expression for the coef-
ficients w;

1 j
vi+2(®) = gy 2 () -i(a), (16)

i=0

The starting point is w,(z) = 1, wy(z) = 0 for w(z,h) = u(z, h) and w,(z) = 0,
wi(z) = 1 for w(z, h) = v(x, h). In principle, all the H«.&;on coefficients for u(x, h)
and v(z,h) can be obtained from the recurrence relation (16). In practice, M._:w
procedure may be hindered by the difficulty of obtaining the derivatives of the
potential function. If such derivatives became exceedingly complex, one may trun-
cate a._.a Taylor series for ¢(z), thus obtaining a polynomial approximation to this
function. This alternative may be considered as a generalization of the algorithm
proposed in Ref. [5].

When V(2) is a polynomial function of the coordinate of degree &, the sum in
Cm.v has at most & + 1 terms for all J values and highly accurate calculations are
mx.m__%. carried out. As an example we consider the Schrédinger equation with the
quartic potential cnergy function

V(z) = 1?, 17)

because several of its eigenvalues have been calculated with high accuracy. In this
case Iq. (8) becomes

1 v
; = 4 D
Wy Gt :C..T.NVQH - E)w, +~».~.u=c.|_ +ma~€.|u+\~§$|m+~$|gv. (18)

where w; =0 if j<0.
o NE:W lowest cigenvalues of the quartic anharmonic oscillator obtained with sev-
ral truncated Taylor expansion for u and v and several /i values are shown in Table
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First four eigenvalues of # = —D? + z*, obtained from the Dirichlet boundary condition
at Tr = 4.0. The largest power of & in u and v is indicated as O(h") and n represents
the quantum nunber.

h QA>J QQ«J QQ«SV
n=20
0.4. 1.06122697341927817 1.06036087646177527 1.06036209343705561
0.2 1.06046171163192288 1.06036209042108940 1.06036209048462957
0.1 1.06036938061217416 1.06036209049228853 1.06036209048418297
Ref. [8,9] 1.060362090484183
n=1
0.4 3.82460742531559007 3.79966566654150645 3.79967302649491913
0.2 3.80131424886906183 3.79967304391438127 3.79967302980195977
0.1 3.79977261392056136 3.79967302993426146 3.79967302980139440
Rel. [8,9] 3.799673029801394
n=2
0.4 7.57838911202742850 7.45573942180112915 7.45569789287405183
0.2 7.46425163590578971 7.45569829754300541 7.45569793798670719
0.1 7.45621971522852105 7.45569793963541250 7.45569793798670719
Ref. [8,9] - 7.455697937986738
n=3
0.4 11.99399574067826170 11.64516659822164310 11.64474531948848920
0.2 11.67235509917848440 11.64474817643553790 11.64474551139882860
0.1 11.64647905485898650 11.644745522290389590 11.64474551137817480
Ref. [8,9] 11.64474551137816

1. Since the potential is parity invariant, the boundary conditions (+oo) = 0 are
replaced by either ¢'(0) = 0, ¢(o0) = 0 or ¢(0) = 0, ¥(co) = 0 for even or odd
states, respectively, in which a sufliciently large value of g is substituted for oco.
In the present case xp = 4 is found to be large enough. As the eigenvalues are
completely determined by the boundary conditions at x = 0 and z = zg, only the
propagation in the forward direction is necessary.

For comparison purposes we have also calculated the eigenvalues of the quartic
oscillator by means of the kth-order constant (reference potential) perturbative
method CPM(k) [3,4] and results are shown in Table 2 for k=0, 1 and 2. We
conclude that our method requires only about 35% of the computation time and
30% of the memory space necessary for a CPM: calculation with the same accuracy.

Similar results are obtained when the Dirichlet boundary condition )(zg) =0
is replaced by the Von Neuman one ¥/(zr) = 0 at the same zp value. If the
calculation is sufficiently accurate, the approximate eigenvalue oblained from the
Dirichlet (Von Neumann) boundary condition tends to the actual eigenvalue from
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First four eigenvalues of ff = —D? 4 £

Table 2

, obtained from the Dirichlet boundary condition

First four eigenvalues of i = ~D*/24+37/2+ az® + Azt for a = 0.005 and § = 0.005,

1 awvan s

obtained from the Dirichlet boundary conditions at 1 = —7.0and zr = 17.0.
h o(h*) O(h?) O(h'?)
n=20 '

0.100 0.503656976697375890
0.050 0.503656976697375890
0.025 0.503654921914727716

0.503654915173656331
0.503654915171880418
0.503654915171875303

0.503651915171875287
0.503654915171875286
0.503654915171875286

Ref. [10] 0.5036549151718752
n=1

0.100 1.51808024773427004 1.51806640970786452 1.51806640969215377

0.050 1.51806720724052245 1.51806640969220357 1.51806640969215377

0.025 1.51806645728286209 1.51806640969215394 1.51806640969215377

Ref. TS 1.518066409692154
n=2

0.100 2.54652107867966299 2.54647212619802626 2.54647212611600319

0.050 2.54647499995448817 2.54647212611627455 2.54647212611600314

0.025 2.54647229922082066 2.54647212611600410 2.54647212611600314

Ref. TS 2.546472126116003
n=3

0.100 3.58850015401629503 3.58837651000681252 3.58837650970413842

0.050 3.58838386534358451 3.58837650970517065 3.58837650970413820

3.58837650970414191

3.58837650970413820

t = i
at zr = 4.0. The functions u and v are approximated by the CPM (k) [3, 4]
h
CPM(0) CPM(1) CPM(2)
0.8 "=
b 1.0598026886
02 wwwmmwwmwom 1.0631559077 1.0603596266
o . 24 1.0606567325 1.0603620817
—N. ; Hm . 1.0603946266 1.0603645407 .
ef. 8,
1.060362090484183
0.8 n=l
b _ v 3.0598026886
b M.MMMﬂawsﬂm 3.8094078810 3.7996607669
o J 6673157 3.8005266246 3.7996729923
W. (s M 3.7995970386 3.7996978208 .
ef. [8,9 '
3.799673029801394
0.8 n=?
o _ ¢ _ 7.4182258488
0 MMNMWNMWW@L 7.4755773731 7.4556631952
o . : 84 7.4572997653 7.4556978969
mw. c ? H_ 7.4681346978 7.4558303636 .
ef. [8,9
7.455697937986738
0.8 =3
s 11.6348262310
02 w“wmwmwwowuw 11.6786173725 11.6446718214
o . 0007 11.6476572592 11.6447459048
mﬂ. . Hm “_ 11.6603061559 11.6449592827 .
el. (8,9
11.64474551137816
Table 3
Lowest eigenvalue of H = —pD? 4 g4 i
= —D* 4+ z* obtained fi iri iti
(DBO) w5 oo (9] for e w.o.o ained from the Dirichlet boundary condition
h DBC Eq. (13)
0.4 1.07328268 1.060053103
0.2 1.07264948 1.059586301
0.1 1.07262096 1.059573711

ab : .

ov““m AWGMOEV as Zp — 00 [6]. In order to compare the accuracy of the eigenvalues

o ne _qo_: the Dirichlet boundary condition with those obtained from the roots
q. (13) for z = xR, we repeated the calculation using smaller values of zp

12

0.025 3.58837695552888970

Ref. [10) 3.588376509704138

Results for £g = 2 are shown in Table 3. We conclude that a given accuracy is
attained with smaller zg values when the boundary condition (13) is used instead
of the Dirichlet one. The practical importance of this substitution is that it results
in a smaller computation time, which is most valuable when using a slow computer.

We next consider V(z) = z2/2 + az® + z* as an example of an asymmetric
potential. For the sake of simplicity the potential parameters are chosen so that
there is just one well (i.e. a® < 163/9). The most convenient starting point for the
propagation is the minimum (say zm) of V(x). The two unknowns, namely, E and
Y'(2m)/¥(zm) are obtained from the boundary conditions ¥(zr) = ¥(zr) = 0.

Results are shown in Table 4 for a = 0.005 and § = 0.005. -
The algorithm discussed above is suitable for studying the vibrational-rotatio-

nal spectra of diatomic molecules. As an example we consider here the Morse
potential energy function ;

V(r) = D{exp[-2a(r — rc)] — 2exp[—a(r - re)l}, 19)

where r, is the equilibrium distance and D and a are potential vmnwganmwmm Here
we choose D = 188.4355, r, = 1.9985 and a = 0.711248, which apply to the

13



- ] ) labte §
irst four eigenvalues of the Morse oscillator with potential energy,
s

V{(r) H U.?Hllm:? —re)]— 2exp[—alr — re)l},

—Jm—‘m b = 188 4355 re =1 @ = 7
w . Dy .9985 i iri

m : P e . N.-& a 0. H—NAN. Ocﬁw.:—w& H—.OE ﬂ-m U:.—ﬁ_:ﬁﬂ var——:m
ary no:&..n:_w Nshh‘l _mN.:Q H&NIQ.O. I =7r—r..

h or') o(h*) O(h"?)

. n=40

mhmm -“%m..wwmwamoqw:qwe -178.798537820233933
] _ 5 o

prsodll ::M.Mwwwwaumﬂu\mommc -178.798538349647613 -178.798538351031350

T 1851268348 -178.798538351027156 -178.798538351031351

exact
~178.798538351031350

-178.798538351020784

. n=1

MMMW -160.257502423032333 -160.283422153501176
c”cwm MMM.WMWMN@@NA@M.\me -160.283425619304765 -160.283425629350030
2 6936078766 -160.283425629319587 -160.283425629350054

exact
. -160.283425629350051

-160.283425629204350

n=2

NWMM -”Mm.wm.;cmc::ﬂsc -142.780046978285688
o..cwm H—A“.hwwmccawpmm&mmu -142.780060301654344 -142.780060342676620
2.779821131726809 -142.780060342547273 -142.780060342676757

exact
-142.780060342676752

-142.780060341879918

. n=3

Mwmm -:m.wamwwoaamzwmw_ -126.288406925011714
ouowm Hmwm.mwﬂwmmmwmmaquqa -126.288442374844842 -126.288442491010986
: 26796327781 -126.288442490631708 -126.288442491011459

cxact
-S.a.mmmim»m 1011453

-126.288442488415472

Mww”mm_._ ..:o_mnim. The _oiomﬁ_v.:wm_z vibrational energy levels obtained by means
. irichlet boundary conditions at xr=—-18andzp =60, z=r—

shown in ,Hm.er 5. The agreement with exact results is ~.m:5~rw.E_m - o
cmmnw,ww A.“m“”“_m.“: presented ro_.n.mm mcm:—.c_m for small computers because it is
i 88%@ E.o,nong which requires little memory space. In addition
o mm.a?ﬁ.%m " .,_:o ._.w E:S;NZN simple and treats the wavefunction and its
st vo:..:_i he vmn._:.dw level. The _wa.ﬁmn fact makes it possible to implement,
e Ew<mn::3.mo_v“ n.ﬂ_. ttions that take into account the asymptotic behaviour
o \ . :w m,no:nm.m% of the results can be systematically improved
pre . tal. the polential function be at least piecewise continuous in (zL,zR)
- A,Mwan Mxmwwmwumom_vm u._u_vnozm__dmg“ma_ by a ‘_‘vo_%:o_:mm_ in each interval (z,z ._.. h).
it m:mMm a“w o. __.,__m ﬁoea:_“:t ._.::2._0: in every interval proves to be the
Smp s - .m% provic ..\m ﬁ_m derivatives can be obtained, otherwise one may try

poltynomial interpolation instead. If 4 is sniall enough one does not expect a

14
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noticeable loss of accuracy when the latter approximation is used.
One-dimensional "supersingular” poteutials of the form V(z) = £? + Az¥
(v <=2, A>0), 0<z <oo(7]can be treated as asymmetric p: -entials. The

boundary conditions in this case are ¥(0) = ¢(oc) = 0.
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