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i :w.a-n using the theory .o», stochastic fluctuation we will attempt to explain
o uc __w:om_ of solvent influence on the electron transport. We have treated

SmA_vnoEoE in ..__n.nmmm of weak electron-solvent interaction. This interaction
produces a fluctuation of the potential surfaces of the final and initial states

of the solute molecules. It i i
o the s« . was shown how this fluctuation aflects the electron

I. INTRODUCTION

Hrm.ewmzmaﬁ of electrons from one molecule to another is a very important pro-
cess in v.o_omz. In respiration and photosynthesis the primary action of the ener
source is to move electrons in an electron transport chain consisting of m_ma:owuu
transfer molecules. New insights into the mechanism of biological electron-transfer
were o._vmson_ by the discovery that they can sometlines occur at a 85@2.@?8
which is too low for ordinary chemical reactions to take place. The understanding
that o_mmﬁo: transfer in biological systems involves quantum-mechanical tunnelin Y
came with the discovery that the rate of cytochrome oxidation in chromatium M_wm_
absolutely temperature independent from 100 to 4 K [1]. A closer examination of
mro theory shows that nuclear motion usually accompanies it. The g:%mawnczw
Emaﬁm:.mm:g under the condition of low temperatures may actually show that the
W\En_o_ (i. e. whole atoms) are tunneling the barrier of their motion [2-5]. In Zowm -
ical E.On.mmmam the distance between the sites of electron localization nm_.ﬂ be E:M_.
substantial, which leads to small tunneling matrix elements. The vibronic m:o... ies
can be about two orders bigger. This has led to a beliel that most biological %mn-
tron transfer is nonadiabatic. In the present work we have studied the :o:m,&m_u.ms.u
electron processes. A stochastic approach to adiabatic electron transfer wmm.o:,o:
has been developed by some authors [6-7). . |
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II. GENERAL FORMULATION

We can write the Hamiltonian of the molecules of donor and acceptor, which
are surrounded by solvent molecules as follows:

H(r,Q,R) = Ho(r,Q) + Hoaw(R) + Hini(r, Q, R) + V(r, Q) (2.1)

Ho, Haw, Hint ate respectively the Hamiltonians of donor aund acceptor molecules,
solvent and interaction between solvent and molecules of donor and acceptor. |4
is the Hamiltonian causing a transition of electron from donor to acceptor. We
will assume that the initial state is an eigenstate of Ho and the transitions to other
eigenstates of Ho are induced by the term V. The initial and final states of a system
are characterized in the Born-Openheimer approximation by the wavefunctions

Wi (r, Q) = 2ilr, Q)Nin(Q) (2.2)
,—:ST._ QV = AvsT., @Y/.a:%@y ﬁwwv

®;, &, are the electronic wavelunctions of the donor and acceptor. Xin, Xfm
are the vibrational wavefunctions. The variables r, Q, R are coordinates of the
electron, the nucleus of the subsystetn {donor and acceptor) and the coordinates
of position and orientation of solvent molecules, respectively. We do not consider
explicitly the role of vibrations in the solvent. Explicitly this was done for the polar
solvent in [8-11]. Distribution of solvent molecules is not homogeneous and their
motions arc not in a steady state. Therefore we will treat the solvent classically,
with R changing with time t. Win, W satisly the Schrddinger equation

Ho¥in = .m-.:@!e AMAV

mc@.?: = M\EG\:-. AMUV

Under the harmonic approximation for the molecular vibration around the adia-
batic potential minimum, the total energy is;

Ep = B+ (v+ 1/2)w. (2.6)

We will be working in the approximation of the one accepted mode. Xin, Xym are
the harmonic wavefunction of vibration

Nin = | 2= Ha(BQ)exp(~2Q*/2) (27)
xz2nn!

P 5@ - AQ) exp(—FQ - 8RR/, (29)
a¥amml

where AQ denotes the shift of the origin, Hr is the Hermit polynomial of order
r, B = (pw/h), where jt,w are the effective mass and frequency of the vibrational
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mode. We consider that the system is in the time { = 0 in the state ¥;,. We
intend to find the transition probability that in time ¢ the system will be in the
state Wym. This transition probability can be expressed in the form

W™ = (g U (L, 0) i) 2, 2.9)

where U(t,0) is the evolution operator, which can be displayed within the frame-
work of the first order time dependent theory
a
U(t,0) Hoxvalm\ H(r)dr)x )
m Ano - o (2.10)
x [1- l\ oxil\ Q?Eﬂ:\,i.vmeIh\. H(r)dr)dt'],
Nu i} N~ 0 h 0

where
H=Ho+ Huy + Hiny. (2.11)

Here we assume that V is independent of time. We will compute the transition
probability
fm 1 2
S\..a = w—'&_?@\a:\_@-:v_ X

. _— , 2 (2.12)
X \o@%ﬁﬁlm\c Am\.\:;ﬂvlm..:ﬁﬂvv&ﬂuﬁz 4

where
Ein = Ein + hi(R(1)) (2.13)
here
\:.ANNV = Aﬁ.._.:u? + m...,:_e..v Awmmv
hy(R) = A&\-m\lc + N.N::_Avsv. . (2.16)

Hing + Hyi, plays the role of fluctuating the electronic state of the molecules of
the subsystem. Since the distances between donor and acceptor are large, the
mixing the electronic states is small. Then we adopt only diagonal terms of the
Hamiltonian #. We will assume, that the Q dependence of H;p,, is very small

and we will use that Hine(r, Q. R) = Hipni(r, Qo, ), where @y is the equilibrium
coordinate of vibration. As it was said above we will treat the solvent classically,
with R changing with time . We rewrite hi(R), hs(R) as follows [12]:

hi(t) = € + Wi(t) (2.17)

hy(t) =€} + Wy(t), (2.18)
36

where € and mw are constant. W;(t) and Wy(t) are the fluctuating fields _vm_omm:.m
to the c.oem:o._m_ surfaces of the final and initjal states of the solute molecules (donor

and acceptor). W;(1) and W((t) satisly
.. W = (W (1)), = .19
A \...A«Vvu? A— .s:vv..? O. A.N v

where ( Y1, 18 the ensemble average over the solvent motion. Under the treat-
sy

ment the transition probability reduces to

" 1 2
va\u.‘n-u = .\—Iw_w\...ﬂ-...:_ X

2 (2:20)
t . t'
x \ exp IM.-\ Am-.:..?: + Mﬁﬂvv&ﬂ at’] .,
o h Jo
where

Ein,fm = m_.an_.mm.lam‘?:.*.me Aw.wwv

e(r) = Wilt) — Wy(t) (2.22)

«\.?:.-.: = AA::.:\_A‘..:V. AMMMQV

We will consider only the nonadiabatic processes and m:__n» sz.w o_am._.o“ RMMHM””M”
i 1 te of vibrational relaxation, the dis

rate is considerably slower than the ra onal atiol X

of vibrational energy level may be regarded as being in equilibrium. The transfe

rate for reaction can be given by

Riy = MU On 3\...::_. (2.23)
where - | »
en = exp(=Ein[kT)[ Y exp(~Eim[kT). (2.24)

m=0

We rewrite the expression for transfer rate in the following form

1 ta Lot
2 p |- e(r))dr] x
Riy HNMM:\??..:_NM‘.F@A\Q A:....\o exp |- \: (e(7))
m,n

(2.25)
X exp l\ml:: +1/2)hw — (m + 1/2)hw + Eo)(tz — t1)} dt1,
1
where
Eo=E? 4+ €2~ Ef —¢]. (2.26)
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The energy Eq + €(r) is called the reaction heat and €(r} is a fluctuation of the

nﬂmna._oz heat. Assuming the Gauss processes for the fluctuation of the solvent, we
obtan

2 ¢ tz
Nw..\ ”qu M _<\3.m:_umawﬁ\ A:w\ £(ts — N_VX
0 0

m,n

g (2.27)
X exp lm:: + Dhw — (m + Dhw + Eg)(ty — t,)] dty,
where
. 1 2 pta :
2= 1) = exp [~ \ \ (€(ta)e(ta))srvdtsdty | . (2.28)
tu Ju
We assumed that the process is stationary with the corrclation function
AmevaAvva? = Avau? exp ml?u == :_\ﬂL Awwwv
; ((®))stv = 0, (2.29a)

S_Snw 7 is the correlation time and (€%)s10 is the mean square fluctuation of the
reaction heat. Integrating with t3 and t4 in eq. (2.26) one obtains

{r)=exp[-T(r—7.(1- expl-r/7.]))]. (2.30)

‘We nole
1, s :
r,= :I...Am YstuTe. (2.30a)

We suppose that we can use the Condon approximation according to which Vi
can be factorized. .

(SrmlVIthin) = (b [V1I6:)(X1m| Nin) (2.31)

{¢71V|9:) is taken at the nuclear coordinates, where its value is maximum [190].

2 ¢ "
L HN.MM@:%.B:_A&\:\_&..Z.N@@A\ %n\. £ty — t1)x
0 0

mn m (2.32)

X exp lN:: + Dhw — (m + )hw + Egj(t2 — ;)] dty,

where Fiun = (X7 Xin)|2. Now we use the relation T.&
Nﬂ.w. Qv — MU M .w:ﬂ:.ﬁ.:—: -
i m=0n=0 )
2 21— 2 - —=
=[(1=s)1-¢*) + (s —q)2) Pexp (- 21— a)(1 — )
(I+s)1-q)+(1—s)(1+q)/’

(2.33)
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where A% = mw(AQ)?/1 is the dimensionless shift of the origin. For transfer rate
we get
9 ¢ ta
\Nu.\ ”'Mﬂ\wm‘o.\v ﬁzw\. mAmw = uwvx
h 0 o
:

X&w‘QNI“LoKU lﬂmcﬁhw.lu_v dty,

(2.34)

where
K(7) =exp[-A%*i + 1/2)]x

A2 ; e (2.35)
x exp | 5-[(R+1)e™7 +ae™*7]],

here V = |(¢;]V|¢:)| and 7 = [exp(hw/kT) — 1]7". Now we can write for R;s

Ry = %“\N—wo \o.Q. - 7)(1)R () exp Iwmoﬂ dr (2.36)
and for I'.1 > 1 one can write:
Riy = m“&w@\oZ E(r)N(r)exp Iwm.cq. dr. (2.37)
Hence one can introduce the rate constant .
kg = MN.W Re \coo E(T)R (T)exp me.oﬂ dr. (2.38)
Using the multinominal expansion of the A'(T), we can rewrite eq. (2.38) as
kis nm\% WU % " I, TMEE+ E_ﬁ exp [Lere — S(20 + 1)} x

g=—00 . (2.39)
o0
X \ exp Hlﬂm [T+ ﬂnallq«; cos[( Eo/hw — qlwTldT,
0
where § = A?/2, I, is the modified Bessel function. When I', << w, we can write
eq. (2.39) in the form
M(\M 1 + 1 pl2

kif == | =5 D Tm?? + E:M_ exp[Lere = S(2f + 1)) x

(2.40)

o .

X \ exp MIFT.+ ﬂoal_.\ﬂai dr,

0
where p = Egf/hw. A useful expression for kiy may be derived i terms of the
confluent hypergeometric function. Upon changing the integration variable to

y=1—exp(—7/7e)

we get ,
2v2 [a+1]"°
n°r, n
x M(l, a+1, a),

where a = I'.7.. M{(a,b,z) is the confluent hypergeometric function.

kig = Iy 25+ D] Jopl-s@atilx g4
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III. POLAR SOLVENT

Now w i
s mQM mwc_«_u::m theory to the polar solvent. We are interested how the
ent vibration mode affects the electron transport. We assumed that

ﬂ—“O MO—cﬂ—:. iteracts Av—:% ¢<.—_~—_ u.m (4 m:—vm%m eimn ‘m—:v: 1 clharge Q vo—ﬂ ———ﬂﬂ—&.ﬁﬁ—o:w.
1 ten
— —
m m ——

m..: r}= € An.l w.J
«(x) d7eq J r— n.\_wmu?\v%.\ (3.1)
ms? = . \.Ahuw 4 Pﬁvm d
2ceo oIk m (3.2)

N .

WMM“W_”.M—MNOW “rm. polarization at point r/, ¢ = 1/eop — 1/, is the well-known

o vo_wlmw.ﬂ o.:.Wwo Mnmn_wwmaw. of e__w mo?n.w:n mode and e is a charge of the electron.

e caused by .._S.o:m:eg_oz of the dipoles of the solvent molecules.
ion will be fluctuating due to solvent orientation. In this case we have

_ ‘
hi(t) = — - 1 p2 .
W) = o [ [P - D+ 5P dr - o= \ e (3.3)
: 1
Hll) = ! po
(1) o :ulnc:fremm- %uwmlo\ﬂu%,v_u%, (3.4)
hi - h LI ]2 2
i =y =50 [(DAF D) = 55 [ (D) = Di(e)dr+
+ [ éP ..NVﬁU\AHVIUmAHVHn_V. -G
where
Dir) = £ [@i(e)* (e =x1)
() :\ _-.I-.._u-. o %9
Doy = £ [ 1 BmPE=r)
4 o) = [ B @)
an
§P(xr,t) = P(r,1) — cD;, (3-8)

r<—~0~® N ——0 Awﬂ:.:——_vﬂ::: —VO—m: ization
OU —mAP . OH F—:«. 8—(A=H mn ﬁ——ﬂ :——P—N,— Om@ﬁ»ho:nﬁ

e(t) = \DU?K%?.S;& 3.9
{e(ta)e(4)) = \\.DUAZDUAHJ?MAF_‘.uvmﬂ?m?vv&inﬁ (3.10)
where
AD(r) = D (r) - D;(r).
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We assume that there does nol. exist a correlation in space and by the fluctuation-

dissipation theorem we get [15]

kpT [ dw £Mw)  iw(ta-
) v = Lt htedl tw(ta ?L. 1
(6P(x, 12)SP 0 L) = 80 1) | TRP” (3.11)

From the Debye theory of diclectric relaxation it follows that the [requency depen-
dence for m:?cv\—m?:w can be expressed by (6]

m:ﬁsv\_mAE:w = cwTe /(1 + w?rl), (3.12)

where Te is (€op/€5)TD) and mp is the average {ime for reorientation of the dipoles of
the solvent. Then, by substituting (3.12) into (3.11), we obtain for the correlation
function of the process :

(e(ta)e(ta)) = 2k T Epexp(=lis = tal /7o), (3.13)

where Ep = 552 :DU?zwan.

C 2 2
Eo=E{ — B} + 5~ ([Dy(x))? — [Di(x)}*)dr — Ep (3.14)
Fa= ﬂ_w.?mem_.: _ (3.15)
13 K

and the rate constant has the form

(...u ~|~+— ri? e 12 ! s
kig =T TE." e Ip T.m?? + 1) wmvc [-S(2n + 1)} (3.16)

x M(l, o+ 1L, a),

here o = wbmﬂ@,ﬂm\:u. p = Eqo/hw. Our results are presented in Fig. 1.
In the numerical results we take Te in the form [6]

Te = Teo exp{ E+/kTY, (3.17)

where E, is the activation energy of viscosity. Results are presented as plots of the

rate constant k versus temperaturec.

V. LIMITING CASES

The expression (3.16) has to be evaluated munerically. In this subsection, we

consider several limiting cases where that expression can be simplified.
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Fig. 1. T i
nmmmm.smu M—.n ahnn....o:-‘__.m:mso_,_\ rate k as a function of temperature. The activationless
- _v tameters are p = § = 20. The vibrational mode frequency w = 6 x 10135~}
1e other parameters are E, = 10~° eV, V=10"%¢V, 1. =10"13 m )
v feo — -

1. High temperature limit kT > hw.

.>~. very _.:mr temperature, 2S[ii(7 + 1)]'/2 becomes large and I, can be ap-
proximated with an asymptotic expression [16] ’

Ip(z) ~ (2wz)~ /2 exp(z — EN\MNV.

Substituting this, (7 + 1)/t ~ exp( T : :
g values: + ( )it~ exp(hw/kT) and the following high temperature

5[+ D]Y2 ~ S(20+ 1) = ~Shw /AT and  25[(H + 1)]/?  25KT /heo
into eq. (3.2) gives

212
b...\ == T:?m.b\)ﬁ\v MIN\N Y : (Eo — Shw vw
3 w >,Nﬁ~.9+u.9. ex -
L Jexp 4ShwkT (4.1)

W:a_ we have the classical Arrhenins activation behav
ere a a 5
e :m_ﬂn are also temperature dependent. In an activationless case when
Yo = w

0 » the rate constant dependence upon temperature in this limiting case is

determined by the effect of the solvent. We also see that the preexponential factor
depends on the polarity of the solvent.

iour at high temperature.
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2. Low temperature hw > k1.
At very low temperature n — 0
Nuﬁuv = zF [pl,

where z = 25[a(f + 1)]/2 and for the rate constant we get

2v2
hq-..\ =

T M(l,a+ m.Qvaxil.wvmin_. (4.2)
: . !

Here the temperature dependence of the rate constant is fully determined by the

effect of the solvent.

V. CONCLUSION

The main goal of this theory was to describe the influence of the dissipation
of the reaction heat on the temperature dependence of the rate constant. The
dissipation of the reaction heat is caused by the interaction of the electron with the
low frequency mode of the solvent. We assume that tlie fluctuations of the solvent
are caused by heat fluctuation. In this case the mean dispersion of the reaction
heat (€2)uy = 2kTE,, where E, is the 'reorganization’ energy of the solvent. For
the polar solvent E, = (c/2¢0) [[AD(r)}*dr, here AD(r) is the change of the
electrical induction vector at the transition. The numerical results are obtained in
the activationless regime, where the influence of the electron-vibrational coupling
on the temperature dependence of the rate constant is minimal. In this case the
dynamics of the solvent play an important role. Our results are valid for the
temperature for which I'.{T) << w. When w = 10%s~1, the reorganization energy
E, < 107% eV and 7, is between 10~11's and several hundred picosecond, the
condition T' << w is fulfilled for all temperature from 10 - 300 K. We can see from
Fig. 1 that the rate constant at high temperature is lower than at low temperature.
This anomalous dependence of the rate constant upon temperature is caused by
the dissipation of the reaction heat. The low frequency mode of polar solvent plays
an important role in these eflects. It was shown that the dynamics of the low
frequency mode of the polar solvent has a strong influence on the electron transfer.
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