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LONGITUDINAL SURFACE WAVE
PROPAGATION IN A PRESTRESSED
GENERALIZED THERMO PIEZOELECTRIC
HALF SPACE OF MONOCLINIC SYMMETRY

SAHA, D.Y, Calcutta

Propagation of a longitudinal surface wave on the surface of a monoclinic piezo-
electric half space which is initially under stress has been considered, taking into
account a generalized thermal coupling as in the Lord and Shulman model. Vari-
ations of the piezoelectric potential, particle displacement, temperature etc. with
depth into the medium, piezoelectric Poynting vector along with the power flow
components and the angle between the group velocity and the phase velocity have
been derived assuming the existence of a shorting plane at a finite distance above
the free surface of the half space.

I. INTRODUCTION

The problem of surface wave propagation in an isotropic elastic half space was
first investigated by Lord Rayleigh [1] in the year 1885. Similar studies, in the
case of anisotropic piezoelectric solids have been attempted by researchers like
Coquin and Tiersten [2], White and Tseng [3], Kaliski [4] etc. due to their
various applications in electronics.

Propagation of surface acoustic waves in a prestressed piezoelectric medium
by incorporating the initial stresses directly in the equations of motion was first
investigated by Nalamwar and Epstein [5]. In the year 1979 Pal [6] extended
propagation of such longitudinal waves of the Rayleigh type to a thermopiezoelec-
tric medium, where a triple coupling between mechanical, electrical and thermal
fields takes place. The thermal coupling considered by him was of classical nature.
The theory of thermoelasticity which takes into account the time needed for the
acceleration of heat flow has aroused much interest in recent years. This theory
is a generalization of the classical coupled thermoelasticity. Several authors, for
example, Lord and Shulman [7], Green and Lindsay {8} etc., have derived the
field equations of this theory on different grounds taking into account one or two
thermal relaxation parameters respectively. After their pioneering attempts (7], [8]
several other researchers have recently devoted their attention to the study of ther-
moelastic problems from the standpoint of generalized thermal coupling. In this
connection, the works done by Agarwal [9], Chandrasekhariah [10], [L1] etc.
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should be mentioned. Similar studies in case of anisotropic piezoelectric solids have
been carried out by Pal [12], Chandrasekhariah [13], Nandy [14], Bassiouny
et al. [15] to name only a few.

In the present paper an attempt has been made to consider the propagation
of a longitudinal surface wave of the Rayleigh type in a prestressed generalized
thermopiezoelectric half space of monoclinic symmetry following Nalamwar and
Epstein [5]. The generalized thermal coupling has been considered as in the Lord
and Shulman model [7]. Ultimately, wave parameters like variations of piezoelec-
tric potential, particle displacement, temperature etc. with depth into the medium,
piezoelectric Poynting vector along with the power flow components and the de-
viation of the direction of group velocity from the phase velocity have also been
determined, assuming the existence of a shorting plate at a finite distance ‘A’ above
the free surface of the half space. .

II. FUNDAMENTAL EQUATIONS OF THE PROBLEM

Newton’s vibration equation, Gauss’s divergence equation and the equations of
state of the piezoelectric material constitute the governing equations of the prob-
lem. Since we consider the substrate to be a prestressed monoclinic piezoelectric
half space, the vibration equation can be taken as

% . @ﬁ... %ﬂ&. _ %n.:c.
9 qunwmnlmv + o P 2.1)

see Bolotin [16], Nalamwar and Epstein [5] etc., where ;) are the initial stress
components. The divergence equation due to Gauss is the following

D;; = (2.2)
The constitutive equations of the material on which surface waves are assumed to
propagate are
Tij = Cijkl — €mij Em — Ai;O
D; = ejr1Sk1 + € Em + pi O (2.3)
o = MuSki + piE; + a’F6

see Mindlin [17] where 7;; are the components of stress, Si; are the strain com-
ponents, D; are the electric displacement components, E; are the electric field
components, ¢ is the entropy, u; are the displacement components and © is the
temperature. ¢;jk1, €mij and ¢;; are the elastic stiffness, piezoelectric constants and
dielectric constants of the material. A;; and p; are the thermoelectric and pyroelec-
tric constants of the material, a®£ is some coupling constant and p is the density
of the medium. Here the summation convention for repeated tensor indices is em-
ployed and an index preceded by a comma denotes differentiation with respect to
some space co-ordinate. Dot notation signifies time derivative.
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In addition to the equations presented above, the following are also important
for the problem. The strain components

1
Sir = 3 (uk, + ur ) (2.4)
and if ¢ is some potential function, then the electric field noa,voEw:am are given by
Ei=—¢,. (2.5)

Moreover, since we consider the Lord and Shulman model [7] of thermal coupling,
the necessary heat equation can be obtained by eliminating the heat flux ¢; from
the following two equations.

g + 10¢i = —Ki;O; (2.6)
@om\ = 4, Aw.d

where 70 and @ are the relaxation parameter and some reference temperature,
respectively. The elastic stiffnesses lijx1 and the piezoelectric constants €mij ap-
pearing in the constitutive equations are with four and three indices, respectively.
These constants can be expressed in two index notation, see Mason [18).

We consider the direction of propagation of the surface wave to be along the
1 axis and the z, axis is taken perpendicular to the free surface drawn towards
the interior of the half space. z3 axis is taken tangential to the free surface in a
direction perpendicular to the (z1—22) plane. On substituting the first equation of

‘ ‘
shortin g

_
L__r plane

X9 ' Fig.1.

(2.3) in the equation (2.1) and using the relevant matrices for elastic, piezoelectric,
dielectric, thermoelectric and pyroelectric constants corresponding to monoclinic
symmetry, see Tiersten [19] and then rejecting derivatives with respect to the z3
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co-ordinate, we find the following three equations

Py =011uy,1) + 012Uy 21 + o21u1,12 + 022U1,22 + €Uy 11 + C1oug 21t

+ c14u3,21 + ce6(u1,22 + uz,12) + cseus 12+

+en®ar +eP2n— A0,
piiz =011u2,11 + O12U3,21 + 021U2,12 + O22U2,22 + Cs6U3, 11+

+ ces(u1,21 + uz131) + C12U1,12 + Ca2up 22 + C24u3 22+

+e26®,21 + €128 15 — 1226 2, (2:8)
pii3 =011u3,11 + T12u3 21 + 021U3,12 + T22U3 22 + Cs5u3 11+

+ es6(u1,21 + u2,11) + C14u1,12 + C24ug 22+

+ Caqu3,22 + €25P 21 + €14P 12 — X230 5.

From the second equation of (2.3) and Gauss’s divergence equation (2.2), together
with the corresponding coefficient matrices and then rejecting the derivatives with
respect to the z3 co-ordinates we find

€11u1,11 + €12Uz 21 + €14u3,21 + €26(u1 22 + ug 12)+ (2.9)
+easus12 — €119,11 — €229 22 + p2O 5 = 0. ’

To obtain the other necessary equation we eliminate the entropy ¢ from the last
equation of (2.3) and the relation obtained by eliminating the heat flux vector ¢;
from equations (2.6) and (2.7). Ultimately, we find the generalized heat equation

in the form

K110,11 + K220 32 = Oo{A11(th1,1 + 7otin,1) + Aza(tia 2 + 7oz, 2)
+ Az3(t3,2 + Toila,2) ~ p2(®,2 + 70D 2) + @’ F(O + 7,8).
(2.10)

These five equations (2.8), (2.9) and (2.10) are the basic equations governing the
problem.

III. PARTIAL WAVE SOLUTIONS OF THE PROBLEM

Let us seek the solution to the five fundamental equations (2.8) to (2.10) de
scribed above in the form

{u1,u2,u3,®,0} = {4, Az, As, As, As} exp(—£2z5) exp{i(§1z; — wt)}.
Substituting the above expression in the system of equations (2.8), (2,9) and (2.10)

we find the following characteristics determinantal equation for the existence of
nontrivial solutions of the problem.
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pv? — et —(c12 + ces)icr —(c14 + cs6)ia e260” — €11 =Auif&
+eesa? + A
—{ces + c12 )i pv? 4 co20?— c2¢a?® — cse —~(e12 + €26 )i Azaféy
—ces + A
—(cs6 + c14)ix c2s0? — cs6 pv? — css+ —(e25 + €14)ic Aazaféy
+eua? + A

e’ — €11 —(e2¢ + e12)ia —(e14 + €25)i €11 — €220° —-paaféy
211600vs— A220¢iavs+ A23600iavs+ —p260piovs— k1 — kppa?—
—1o(M160iv?E1) +70(A2200av?€1) +70(A23Boavily) —To(p2@octiv?) —a*EOgiv,/6
~70(a*26v?)

The determinantal equation (3.1) can also be written in the following form

Anew —cii+cesa + A, pv? —cos+ oo’ + A, pvl —css +caaa® + A,
a*EBqv,i
&

where the -elements within the second bracket are the diagonal elements of the
above determinant. The equation (3.1) can again be written as

2

2 E
€11 — €207, \n: e kan ol = ﬂonu ®cewv = O..

A* + 1610, AT =0, (3.2)
where
AT = ﬁnew -+ cesa’ + A, pv2 —ces+ cpa? + A, pv? —css+
% hm;
+ GA»QN + x»‘ €11 — mwaN, K11 — RMNQN - Dl.mgv Awwv
1

and ’ .

A = Abew —c11 +ceesa® + A, pvl—ces+ capa’+ A, pv?—css+

E
a’ @o.:
+ caaa® + A, e IASQ» - INLW (34)
1.
where ¢
2 w 2 .
= = a - = Uy, A =o090® — 011 —ia(o12 + 021),

& &
a and v, are the decay parameter and the phase velocity of the wave, A is some
function of the prestress components. Equation (3.2) indicates clearly how the dis-
persion equation for the corresponding classical thermal coupling problem changes
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due to the introduction of the relaxation parameter o in the case of generalized
thermal coupling. Substituting the values of all the material constants and expand-
ing the determinantal equation (3.1), we find a tenth degree equation in « in terms
of the phase velocity v, and wave number £;. Putting the relaxation parameter o
equal to zero, the determinantal dispersion equation (3.1) reduces to

A* =0 (3.5)

which has been obtained by Pal [6] assuming classical thermal coupling. In the
absence of thermal coupling the dispersion equation (3.1) simplifies to a fourth
order determinantal equation

pv? —c11 +ceea® + A —(c12 + ce6 )i —(c14 + cse)ia —eyy + e260?
—~(ces + c12)ia pv? +c20® —cee + A casa? — cse ~(e12 +exglia| _
—(cse + c14)icx c240? — cs6 pv? —css +cuua? + A —(eas + en)ia
—e11 + ez60? —(e12 + €26 )ic —(e14 + €25 )i €1 — ez20?
(3.6)
where the following amplitude ratios P, @, R and T are introduced
.bw \Au \r \»m
P=2= = R=—" T =2, 3.7
b =% R=fL 1= (37)

The expressions for displacement components, piezoelectric potential and temper-
ature become

T: , U2, U3, Avq @w = A\: 5 Nu\#f @\wr mws»m. NHAHV OXUAIMNHMV mXﬁAmAMTnh = Euvw.
(3.8)
Now substituting the above expressions in the equations (2.8) and (2.9) and then
solving we find

o DM
= Ay’

=42
=2

IDN

=F s

-P -Q -R -T = A, (3.9)

where A;, Az, As, Ag and Ay are the following determinants.

Ay =|Cy, Cs, Ca Gsl
Ay =|Ce, C1, Ca, Cs
A3 =|Cq Cs, Ci, Cs (3.10)
Ay=|Cq C3, Ci, G
Ao=1Cz, Ci, Ci GCs

I

where C; (i = 1,2,3,4,5) are the five columns of the determinant in equation (3.1)
omitting the last row.

Though equation (3.1) is a tenth degree equation in the decay parameter a having
ten complex roots a; for each value of v, and §;, five of them can be eliminated
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by means of conditions at infinity as in Kaliski {4]. The remaining roots a; (7=
1,2,3,4,5) are used to build up the general solution of the problem.

m u . m . m .
?,s,s_eénM%,Mm%.M@RM:_M@%‘
i=1 i=1 i=1 ji=1

5
DA b exp(—€1a522) expli(Erzy — wi)) 3.11)
ji=1

where P, Q;, R; and T; are the valuesof P, Q, R and T for o = a; to be obtained
from equations (3.9) using (3.10). In the case of classical thermal coupling the
roots a; are to be determined from the equation (3.3). When thermal coupling
is switched off completely, the general solution for the surface wave propagation
involves only four partial waves corresponding to the four permissible roots aj
(7 = 1,2,3,4) of the equation (3.6).

IV. BOUNDARY CONDITIONS

Though the particle motion is limited to the inside of the crystal, the electric
field is not confined to that restriction. Hence we have to consider the equations of
the electric field in vacuum beyond the free surface of the half space. If E; is the

electric field in the vacuum, then m....,. = 0 and hence using the potential £; = I@....

we find
V3¢ = 0. (4.1)

Moreover, since we assume the existence of an electrical shorting plane at a certain
height (say h) above the free surface,

[Bep=mn = 0. (4.2)

Let us choose the electric potential $ in the vacuum above the free surface of the
piezoelectric half space in the form

® = Agsinh{€,(z + h)} exp{i(612; — wt)} (4.3)
such that it satisfies equations (4.1) and (4.2). The boundary conditions at the

free surface can be taken as
i) Stress components

T =0 (i=1, 2,3) at z2=0. (4.4)
ii) The tangential components of the electric field are continuous at the free surface

z2=190 P, =9, at 9 =0. (4.5)
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iii) Normal components of the electric displacement are continuous at the free
surface

Ty = 0 ,Dn = N‘Un at Iy = 0. A#mv

iv) The free surface of the half space is thermally insulated

7

» A%I@lv =0 at z, = 0. (4.7)
& %HN

Using the above mentioned boundary conditions we find a set of six equations
in \»Mu. ) ( = 1,2,3,4,5) and A¢. From these six equations only the fourth and
fifth equation involve in addition to \»m&. ) (7 =1,2,3,4,5) the other amplitude As.
Eliminating As from these two equations, ultimately the above mentioned set of
six equations can be reduced to a set of five equations in \»mu ). These five equations
can be written in the form

dij A =0 (i,j=1,2,3,4,5) (4.8)

where d;;’s are the following

dij = ic56Q; — ceetj + icee P; — eg60j R,
daj = i1012 — €2261 Pjaj — £1C240;Q; + 161612 Ry — AT,

dsj = ic14€y — c24&10; P — Qjcaséioj +ie1aRiéy — 23T},

dyj = E1€59)d3] + tanh(€, h)dj;, (4.9)
dsj = Tja;,

3 = 161e25Q; — ea6€10j +i€1e26 P + E1€9205 Rj + 2T,
& = R;.

In equations (4.9) the repeated suffix does not indicate summation over that suffix.
Equations (4.8) would have nontrivial solution if

[di;] = 0. (4.10)

This is a fifth order determinant and its elements are given by equations (4.9).
Now let us divide each of (4.8) by \»m: and solving any four of these five equations
we can find the ratios
3 4 ()

IO

13! iy? 1)’ 1

AT A
Denoting the above four ratios by l31, I3, 141 and Is; respectively, the displacement
components, piezoelectric potential and temperature can be expressed as the sum
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of five partial waves. Hence

u =AY {exp(~&1a173) + lo1 exp(—€1@222) + I3y exp(—E1a3zs)

+ la1 exp(—€1aaz2) + 51 exp(—E1asza)} exp{i(6121 — wit)}.
uz H.UH\»M: {exp(—&1a122) + Pay exp(—€1a2z2) + Pa; exp(—€1a3zs)

+ Py exp(—€1a472) + Ps; exp(—£1asz2)} exp{i(€1z1 — wt)}.
ug H@i»m: {exp(—€1a122) + Q21 exp(—€10222) + Q31 exp(—E€; azzs)+

+ Qa1 exp(—£10472) + Q51 exp(—€10522)} exp{i(12y — wt)}. (4.11)
& =R, A(Y {exp(—£10122) + Rz1 exp(—€1a2z2) + Ra1 exp(—€1aazs)+

+ Ra1 exp(—§1aaz2) + Rsyexp(—& asza)}exp{i(€12) — wt)}.
e =1, A" {exp(—&1c122) + Ty exp(—€1@az3) + Ta; exp(—Eraazs )+

+ Tarexp(~§1422) + Ty exp(—E1asz2)} exp{i(€121 — wt)}

where
{Pji, Qji, Rji; Tji}j=2,3,45 = AMJ R M_,J .mﬂv ljy. © (412)
V. PIEZOELECTRIC POYNTING VECTOR
AND POWER-FLOW COMPONENTS

The analysis of surface wave propagation remains incomplete if the piezoelectric
Poynting vector and the associated power flow components is not considered.

Using Auld’s [20] notation, piezoelectric Poynting vector P is given by the
relation

v -r ExH*
P= —_— :
2 + 2 . (5.1)
Neglecting the electro magnetic part lm.lxm.m.h we find P = 2 w.ﬂ. (5.2)

Here * indicates the complex conjugate of the corresponding factor. Hence the
power flow components

1 e du;
Pr;= 3 real —\c ﬁ.@. T va&u_ : (5.3)
see, Auld [20].

The magnitude of this vector gives the time average power crossing a strip of unit
width and infinite depth oriented perpendicular to the vector.

Substituting the expressions for the stress component and velocity in equation (5.3)
and then integrating, the components of power flow along the three directions of
coordinate axes can be determined. The power flow component along the z; axis
direction of propagation of the surface wave is the following:

~
Pr,= m:ww_ T\IRwSEM:meﬂ_ . (5.4)
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Similarly the component along the direction (z3 axis) perpendicular to the Saggital
plane is given by

1 -
Prs = ; real TLRSEM:_NTP . (5.5)

Hence the deviation of the group velocity from the direction of the phase velocity
of the surface wave is

1270 =
-1 Prs -1 wi,\lumwe.._\»m V_ufﬁl
tan”™" —= = tan o) .
Pra Re{v/=1&3v,|A; |21, 15}

The repeated suffix j indicates summation over it from 1 to 5, is the complex
conjugate of l;; and §; =1}, = 1.

5
m; +n; P* 4+ 0;Q?
N.w. — J ik i . 56
W Siaj +Efal (5.6)
w —_—
s m; +n; Pr+0,Q!
NJm = ] 271 1% . A.W.N
Wm iaj +&af
where
. . \/_.m
m; = .:Tn: - nSNUu.Qu. - nS@.ﬂ.Q.ﬂ. + —m:m@ - lﬂﬁv.

n; = lj1{ices P; — ceerj + ics6@; — eas Rjaj},
8; = lj {icse P; — csearj + icssQ; — eas Rja; },

m; = lj;{ic1s — cseqj +icse Py + icssQj + leas Rjaj},

: 5 A
n; = ...—Tnz — 24 Pjoj — cqq05Q; + 1e14R; — %ﬁv.
— . : A3
@.n. = N.T;Tn—u - aw»@.«.Qm + 55@‘.. = M.pluHL

In the expressions for m;, nj, ©;, 7;, 7;, O; the repeated suffix does not indicate
summation.

VI. DISCUSSION

To summarize the above analysis we recall that the characteristic determinantal

. w
equation (3.1) relates the decay constants a(= wwv. the phase velocity v,(= —
1 1

and the wave number £;. These parameters also satisfy the other determinantal

equation (4.10) obtained from the boundary conditions of the problem. In such
wave propagation problems, numerical techniques are used to evaluate the val-
ues for the decay constants o phase velocity v, and the wave number £;; see,
Nandy [14], White and Tseng [3] etc. These techniques consist in assigning
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values of the wave number £, and phase velocity v, (or angular frequency w)
in the characteristic determinantal equation (3.1) and then solving for the de-
cay constant. These decay constants together with the preassigned values for the
wave numbers and the phase velocity are then substituted in the determinantal
equation obtained from the boundary conditions to see whether the equation is
satisfied. If not, new values for the wave number £; and phase velocity are chosen
and by substituting then in the characteristic equation (3.1) new values for the
decay constants a are derived. This process is continued until a set of values for
the decay constants, phase velocity and wave number are obtained for which both
determinantal equations are satisfied.

The values for the decay constants, phase velocity and wave number thus deter-
mined are substituted in the equation (4.11) to obtain the final expressions for the
displacement components, piezoelectric potential and temperature decaying with
depth into the medium. Putting these values in the equations (5.4), (5.5), (5.6) and
{5.7) the power flow components and the angle of deviation can be determined.

Substituting h, the distance of the shorting plane above the free surface of
the half space equal to zero and infinity in the determinantal equation (4.10)
derived from the boundary conditions, proceeding in the usual manner, we get the
corresponding results for the surface wave propagation when the free surface is
covered with a thin conducting film or is electrically free and open t6 vacuum.

Further, substituting the prestress components o;; and the thermal relaxation
parameter 7o equal to zero the results obtained in the present paper reduce to those
already derived for such wave propagation in a monoclinic piezoelectric halfspace
with classical thermal coupling by Pal [6].
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PACIIPOCTPAHEHME IIPONOJILHOM NOBEPXHOCTHOL
BOJIHBI B OBOBHIEHHOM TEPMO HbE303JEKTPUYECKOM
IIOJTYNPOCTPAHCTBE C MOHOKJIMHHOM CUMMETPMEI,

HAXONAUIUMCS N0 OJABJIEHUEM

Pacnpocrpatenne npononbuodf moBepxHocTHOU BOJIHBI HAa MOBEPXHOCTHU
NbE303JIEKTPUIECKOrO MONYIPOCTPAHCTBA C MOHOKNMHHON cumMMerpueli, ko-
TOpOe HAXOAUTCA MO AABJIEHUEM, U3YUYEHO C IpUMeHeHNeM o6obieHoi Teno-
Bolt cBA3u B pamkax Moaenu Jlopa-1lunmana. Usmenenns ObE303JIEKTpUYEC-
KOro noTeHuuasa, pasMelleHUA YACTHIB], TEMIEPATYPhl ¥ T.A. C TOJIIMHOMK
MaTepHalia, Nbe303jieKTpUuecKkoro Bekropa [loliTunra oTHoCHMTE IBHO KOoMMoO-
HEHT MOTOKA MOIIHOCTH M yroJl MeXxAy ¢a3zoBolf u rpynmnoBo#t ckopocTbamu
OnpeeeHbl IPH NP eANoN0XKeHUM CYIECTBOBAHNA 3aK0pouMBalomel Iockoc-
TH C KOHEYHBIM PACCTOAHMEM Hall CGOAOAHOM MOBEPXHOCTLIO MOJYIPOCTPaH-
CTBa.
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