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CONDENSATION OF YANG-MILLS FIELD
AT HIGH TEMPERATURE
IN THE PRESENCE OF FERMIONS

NAKAMURA, A."), SHIRAISHI K.2), Tokyo

The possible condensation of the time-component of Yang-Mills field at
finite temperature is discussed in the presence of Dirac fermions. We show that
the condensation forms regardless of the number of fundamental and adjoint
fermion species coupled to the Yang-Mills field. The effect of finite density of
fermions is also investigated and it is shown that the magnitude of the conden-
sation is also independent of the densities.

I. INTRODUCTION

In the Euclidean formulation of quantum field theory at finite temperature,
the imaginary time variable (7) is compactified with a period 8 = T-!, where T is
the temperature of the system [1].

Then a classical background of gauge field (Ao) # 0 cannot be transformed into
Ao = 0 in general, because only gauge transformations which satisfy the periodic
boundary condition in the Euclidean time direction are permitted [2].

It has been claimed that a condensation of field Ay in non-Abelian theory
arises at finite temperature [3,4]. Stimulated by this result, in the present paper
we examine the condensation of the gauge field at finite temperature in the presence
of fermions. If the phenomenon of gauge field condensation has some relevance to
the physics of quark-gluon plasma phase [5], the presence of fermions as “ quarks”
must be crucial for thorough analysis. .

As the simplest case, we carry out in this paper the calculations of the effec-
tive potential of finite temperature SU(2) gauge theory up to two-loop order with
fundamental and adjoint fermions. The generalization to the SU(3) case will be
reported in the future.
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II. EFFECTIVE POTENTIAL

We show the effective potential, or, free energy in background space-time R4 x
51, where S! stands for the compact time direction. By global gauge rotation, we
can choose a classical background gauge field in a matrix form as
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where g is the Yang-Mils coupling constant. The value of Ao condensation is
described by the expectation value of &.

The free energy up to two-loop in the pure SU(2) Yang-Mills theory in four
dimensions has been obtained by many authors, for example in ref. [4,6]. In general
dimensions we find that free energy up to two-loop level is expressed as
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where D = d 41 is the dimension of the space-time.

The summations of the series in this expression can be reduced to polynomials
provided that D is an even number. Those are known as Bernoulli polynomials
B,(z) [7] and we can write them as
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where 0 <z < 2r and nis an integer. The Bernoulli polynomials are, for example,

By(z) = 2® — z + 1/6, (4)
By(z) = z* - 22° + 22 — 1/30, (5)

etc.

By using these polynomials, we can simply expand the effective potential F,
for ® around @ = (. (Note that at one-loop level, or equivalently when g is set to
zero, global minimum is at ¢ = 0.)

Here we set D = 4, our dimensions. We get an expansion
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From this, one can find that the minimum of the free energy is located at
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in the leading order in g. Then a condensate forms and the value is {Ao)
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T 8r \0 -1/

We thus conclude that Ay condensation is formed at finite temperature in the
pure Yang-Mils system with small g. This value of condensation is consistent with
g < 1 and the perturbation is valid.

It is notable that this “phenomenon” is peculiar for D = 4. For s > 4, it
is known that B,(z) does not have the linear term in z. Therefore if gauge field
condensation occurs in D > 4, the effect of higher-order terms of ® in the potential
must be essential. One can easily find, however, that it is impossible to yield the
condensation by perturbative way in the case with D > 4.

An approach to non-perturbative effects on Yang-Mills condensation has been
studied by the present authors in ref. [8]. We cannot touch on this immense subject

in the present paper, and here we concentrate on the perturbative argument.

Fig. 1. A two-loop Feynman diagram for a fermion contribution.

III. FERMION DIAGRAM

Next, we compute the fermion &wmami. The one-loop result is obtained by
the standard technique and is widely known. See for example ref. [9]. The two
loop diagram in Fig. 1 contributes to the free energy. We consider Dirac fermions
in fundamental and adjoint representations of SU(2). Calculations are straight-
forward tasks and after some rearrangements the results of two-loop contributions
to free energy of the fundamental and adjoint fermions in general dimensions are
represented as follows:
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F,(two — loop) = lmwa:u\u_ Uw wﬂnbl
x [2(I(x + ®) + I(x — ®)}HI(0) + I(®) = I(r)}—
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where [ ] in the first line of each equation is Gauss’ symbol and
1 D -2\ = coskz
I(z) = wab\»HA 3 v 2 W=7 (10)

Each I in egs. (8) and (9) comes from the momentum integration, which
corresponds to a line in the diagram (Fig. 1). There are two integrations in each
two-loop diagram, because of the momentum conservation. In order to obtain the
result of (8) and (9), one needs to sum up the contributions of the diagrams in
which SU(2) suffixes are assigned to each line. At the moment, one must notice
that each propagator contains the coupling to the background gauge field, i.e. ®,
and it depends on the SU(2) suffix.

Again we can investigate the location of the minimum by expansion with
respect to small ®. For D = 4, we get the expansion of the free energy of fermions
at one- and two-loop level for each species:
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where we discard the O(g2®?) term, which is irrelevant for our purpose. Thus in
each case free energy has perturbative minimum; the minimum of Fy and F, are
both located at ® = g?/4r when g < 1. This is a marked result. Total free energy
is given by Fy+ Ny Fy + NoF,, where N; and N, are the number of fermion species
which belong to the fundamental and adjoint representations of SU(2), respectively.
Since the total free energy is given as a linear combination of F's, the magnitude of
the condensate turns out to be independent of the number of the fermion species.

IV. FINITE DENSITY EFFECT

Finally, we examine finite density effect of fermions. Finite density effects
of “quarks” may have much importance in the physics of a possible formation of
quark-gluon plasma at hadronic collision and very early universe [5].

We introduce chemical potentials for fermion numbers. This can be incor-
porated in the calculation of diagrams by considering the general phase of the
fermionic field ¥ which appears in the boundary condition:

(7 + B) = —ey(r), (13)
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and setting § to an imaginary value -ig, where # is identified to the chemical
potential.

For SU(2) fundamental and adjoint Dirac fermions the contributions up to two-
loop to the thermodynamic potential (R) including respective chemical potentials
as the potential of ¢ behave near P 0 as
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Here we omitted the O(g?®?) term again. These expressions are given by the
replacement § — =ip in analogous calculations to eqs. (8) and (9), and rewriting
them using the Bernoullj polynomials. The result of calculations including the
“twists” can be found in ref. (8] (note the difference in the definitions of 6). Judging
from these, we find nwﬁ location of the minimum of total thermodynamic potentia]
is unchanged, ¢ = 4, in the leading order. It is revealed that the magnitude of
the Ay condensation is independent of the density of fermions in the fundamental
and adjoint representations of SU(2) at least in the perturbative regime.

To summarize all the results, we declare that gauge field condensation seems to
take place even if fermion fields are present. The finite density of fermions does not
affect the magnitude of the condensate. To obtain the next-leading contribution in
(®), i.e., O(¢®) we have to calculate an infinite sum of diagrams [6]. We leave the
higher-order calculation for a future subject.

Inref. [4a], Belyaev claimed that the contribution of ring diagrams of gluons
cancels the linear term of & in the free energy. Nevertheless, it is yet unknown
whether the fermion contribution we have calculated is canceled by higher-order
contribution or not. So far, we do not know fermionic diagrams which cancel the
linear term. We feel the importance of a further study of the fermionic matter field
in the high-temperature YM theory.

The “realistic” case of SU(3) “quarks” will be studied by a similar method
with straightforward but tedious calculations. The investigations of perturbative
and non-perturbative approaches and analytical and non-analytical methods will
progress side by side, and we hope to report the full non-Abelian effects and physical
insight in separate publications.
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KOHAEHCALIAA NOMNA AHTA-MHIIBCA
IIPH BLICOKO! TEMIEPATYPE B OPHCYTCBHK DEPMUOHOB

B pa6ore o6cyxjpaerca BOOMOXHOCTH XOH[CHCALNE BpeMenHOR XOMOOHEHTH Moia
Hura-Mnasca npy xonesioi TeMilepaType B IpUCYTCTBRE (epMuoHOn Hupaxa. Hoxaoan-
HO, YTO XOMEHCARMA HEOABHCHT OT XONHYECTBA OCHOBHLIX PEPMEOHOB HE OT KOMHYeCTBA
OXPYXRIOWHX GEPMHEOHOB CBABAHMLIX HOMEM Aura-Maneca. Hcenegosanne spdexra nnor-
HOCTA depMMoNOB Noxasany, sro HECYLUECTBYET BABHCEMOCTD, BeNHYHNEL KOM[IEHCARME
OT NAOTHOCTH. :
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