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SECOND ORDER APPROXIMATION
TO THE MEAN DISPLACEMENT OF A PARTICLE
COUPLED WITH A HEAT BATH
AND DRIVEN BY AN EXTERNAL FORCE.

KOSTAKIS, G. C.1), Kifissia, KOSTAKIS, C. G.%), Pireaus

&mv_.mnmam:a of this particle has been computed up to second order approx-
Imation in the propagator. The heat bath has been considered as Brownian
and the characteristic frequencies are close to the characteristic frequency of

I. INTRODUCTION

The behaviour of a quantum particle coupled with a heat bath has been studied
by many authors. Iche and Nozieres [1] have considered a heavy particle
in a thermal bath. The statistical properties of a quantum mechanical system

of quantum oscillators have been found to be of the generalized Langevin form
model with regard to the influence of an external force, having used a path integral
approach (3], [4]. The correlation functions of such a model have been calculated
by Astangul, Pottier and Saint James [5].

In this work we study the problem of a quantum particle in a thermal bath
under the influence of an external force.

The Hamiltonian of the system is

H= MU hwpatag + hwata + M Crlat + a)(a} +a;) - F(a* +a),
k k

where Cy are the coupling constants, which are considered to be small.
The heat bath is initially in thermal equilibrium and the density operator
obeys a Boltzmann distribution. The perturbed part of the Hamiltonian has been
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treated with the aid of Feynmann’s perturbation formula for the propagator. The
propagator has been calculated up to second order approximation.

In the calculation of the second order approximation to the propagator we
considered another approximation involving the dependence on Aw;, where Aw; =
w; — w is the difference between the eigenfrequencies of the particle and the oscil-
lators of the heat bath.

In many case one frequency is close to the frequency of the particle and the
others do not contribute to the final result. )

II. FORMULATION OF THE PROBLEM

a) Coherent states

For the harmonic oscillator problem, we use the creation and annihilation
operators, a* and a, respectively, and a complete set of basis vectors.
Glauber [2] defined the eigenvector of the non Hermitian operator by

ala) = afa). 1)

The coherent states |a) can be shown to obey the following relation

lef? o= "
la) =€z .,Muw..,\w__zv (2
and they form a complete set of states, i.e.

[t =1, 3

where

d*a = d(Rea)d(Ima). 4)

Coherent states were extensively used, see for example Ref. [3].
The operation of at upon the eigenstates |a) leads to the formula

iEA%. WV o), 5)

where the bar over a means complex conjugation.
Another useful relation of the coherent states is

{ala’) =e” _mm_mmlﬁ._wmmn\. (6)

For more details on coherent states see Refs. [2], {4}, [6).
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b) The propagator

For a time independent Hamiltonian the evolution operator U(t|t') is given by

U(tlt') = exp Tw\ﬁs - “,L 7
and the propagator associated with two different states is given by
K(at|a'0) = (afe™ #H¢[o). (8)

The difficulty arises when the terms forming the Hamiltonian operator do not
commute with each other, and so they cannot be separated. For more details on

non commuting operators see Ref. (10] and on Baker-Hausdorff’s theorem of group
theory see Ref, {11].

When the Hamiltonian consists of two parts
H=Ho+ H' 9

not commuting with each other, we use Feynman’s perturbation theory [12] to
compute the propagator F(at|a’0). In Eq. (9) H' is the perturbed part of the
Hamiltonian. In what follows we are going to use the symbol K (t) for the propa-
gator K(at|a’0), which is the amplitude of probability for a system being in state
o' at time g = 0, to go to the state o at time ¢.

The solution of the Schrédinger equation

is the zero-order approximation of the propagator of the system and is given by
iH, !
Ko(at|a'0) = (ae™ o). (11)

In order to find the first order approximation we use the well-know iteration:

K0 = o) = 3 [ Koltir) /() Ka(ryr, )

where Ko(¢|7) means Ko(t — 7).

In our work, we &0 up to the second order approximation for the propagator,
which is given by

Ky(t) = Ko(t) — M.\cn Ko(ti)H'(T) K\ (7)dr. (13)

The propagator associated with the Hamiltonian of the system can be used in
calculating the “interaction picture” of any operator describing a variable of the
system. If A(Lo) is an operator at time ¢ — to, the same operator at time ¢ js

A(t) = U*(tito) Alto)U (t]to), (14)
where U*(t]to) is the Hermitian adjoint of U(t|t,).
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c) The density matrix

In order to compute mean values associated with our system we use a procedure
based on the density operator, which at time ¢ = 0 is given by

o Eﬂ+§
R(a,a*) = 0 — -t 15)
An‘ a v - No ) *N.. A
where Zy is the normalizing factor given by the trace of the matrix
d2
Z = Trehente o [(gle-shoctapg e (16)

The density operator at time ¢ is given by
R(t) = U(t|0)RoU* (2]0). (17)

We evaluate thermal averages using the generalized Wick theorem [13].
The Hamiltonian of our problem is such that

U*(t) = U(-t), (18)
because the annihilation and creation operators obey the following property
((ata)")* = (a*a)n, (19)
the density operator (17) is given by
R(t) = U(t)RoU(—t). (20)

To find the matrix elements of our operators we make use of the well-known (see
for example Ref. [11]) formula

2 "2
AQ_aa..:_D\v = exp Tlamo\ - _NMI - I_Qw_ g i (21)
The matrix elements of the equilibrium density operator are given by
+
n _ falefhetaja)
= . 22
pofen o) = 2 (22
From Eq. (16) we can find Z,
—Bhwata d2a —BRwn 1
Zo = \AQ_Q Pl F\vﬂ = Mm Phen = 1 — e—Phw (23)
and from Eq. (21) we can find
2 "2
AQ_wlum€a+n_Q~v = exp A@Ihm&@b‘\ _ _NM_.I _ _Qw_ v Awhv
The equilibrium density matrix elements in (22) are given by
—[af? —la'f?
po(a, ') = (1 — e=PAv) exp(e PP aa)e ™7 e T, (25)

If we know the density matrix R, we can compute the mean value of any operator
M, from the trace of the matrix MR

(M) = TY(MR). (26)
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III. THE DENSITY MATRIX FOR A PARTICLE
IN A THERMAL BATH

The Hamiltonian of a quantum particle coupled to a thermal bath and driven
by an external force F is given by

H = MUmEnnu.Sn + hwata + MQ»?+ +a)(af +a;) - F(a* +a). 27)
) k

In the third term in the Hamiltonjan representing the interaction of the particle
with the bath, the coupling constants C} are small.
The Hamiltonian (27) can be separated into two parts, Hy and H', where

Ho=)_ hwiafay + hwata (28)
k

is the Hamiltonian that corresponds to the particle and to the system of oscillators,
and

H = ?+ +a) MUQ»?N. +ag)— ~u?+ +a) (29)
k

is the perturbed part of the Hamiltonian associated with a weak interaction of the
particle with the oscillators and with the external force exerted on the particle.

The system is initially in thermal equilibrium and its density operator is given ,
by the following Boltzmann distribution

alu=AMr Wy a»+n.ﬁ +E§+av

+ +) = 0
mwoﬁn»_ et v Tr AGIE.AMU» ErnHar+Ea+avv . A..w V
The matrix elements of the density operator are
(aralRo(ar, af 0, a*)lafa’) = [T (1 - c=Phon) (1 = e=m)
k
X exp Mm»&nolu?&n +aale—Phw | o 31)
k
loe|? o> a2 |a?
A T e N ]
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1V. FIRST ORDER APPROXIMATION
OF THE MEAN DISPLACEMENT OF THE PARTICLE

We start our evaluations from the propagator Ko(t|r) corresponding to the
Hamiltonian Hy.

Form Eq. (11) we can see that the matrix elements of the zero order propagator
are

Ko(t]0) = exp M@w&nmlei +aale it |
k

joul? _~logf Jof  Jerp
S N e N e e
k a

(32)

We proceed via Feynman’s perturbation theory [12] and with the aid of Eq. (12)
we evaluate the first order approximation of the propagator.
The matrix element

(aralU (L) H'(r)Us(7]0)|afp o)

(Uo(t) is the evolution operator associated with the zero order propagator Ko(t))
can by evaluated from the following integral

\ (ewalUs(tir)loto") (afa”| H'(1)Un(rl0)opa’)a%e" [ 2. (33)
k

For the second factor of this product we use the relation (A12) given in Appendix
11 :

(aga”[H'()Uo(7]0)|}a’) = exp MUQnQ»mLe: +a"a'eT | x
k

X Am:.TD\mImEﬂv MQwAQ:.T Q\mlmsﬂv — N«..Aﬁwz.TQ\ml_.Eﬂv X Awhv
k

worp (- IEHE P sl o)
- 2 2 p 2 2

The first factor of Eq. (33) is the zero order propagator Ko(t/7) given by (32) at
time t = —7.
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The integral (33) can be written as follows

\ouﬂu MU@»QN@IE:QIJ + aaem (-1
k

"2

2 2 12
— IMU_Q»_ .._QI_IM_S _ | x
k k

2 2 2 2

x AQ:+Q~0L£,J M”Q-h Amw\.*.Q»mlmE:v _ N.._AQ:ITQ\oLEﬂv X Awmv
k

X exp M ayage ™™ 4 @"a'e" T | x
k

112 Q:_n

_Q“n_.‘w _D\_N _Dcn _ 2 1 2 1
X exp IM 2 "3 IM 2 "5 mQH»H&QT

The integrations over ay and o will be performed with the aid of the generating
function given in Appendix I. The corresponding formulae from Appendix I are
(A4) and (A5) and the matrix element (oka|Up(t|T)H'(T)Up(7[0)|a}a’) is

Ko(t|r)H'(r)Ko(|0) = [(ae-tt=n +ale™) x

% MIJ\Q Am»mlsk:ul + Q?LE:V ~F Amoufﬁaa +.o\mn_§v_ %
k

. . 36
X exp M@»Q»oa_ei+mn&mli X (36)
%
lae?  Jof? loi[?  Jo'f?
X exp MM 2 IMIIM 2 3 |-

Feynman’s formula (12) requires an integration of (36) over 7, that can easily be
performed. ,
The final result for the first approximation of the propagator K 1{t) is

Ki(aartjaia'0) = exp M apale™ U ! 4 galemiwt | x
k

X (14> " Di(t)(@ra + ofa’) + Y Ee(t)(Gre’ + o}@) + At)a + o) | x
k k
loxl® _ |af? o> o2
e N R P SEE P
k k

where

37)

ﬁm!REr +wit __ _.v

Di(t) = Cy (or ¥ 0)

(38)
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Amlmsxn _ mlmE«v

Ex(t) = Ck 3 e

(39)

AW = m (1—emit). (40)

This is the first approximation to the propagator of our system and we use this
propagator to compute the first approximation to the density matrix of our system,
which was initially in thermodynamical equilibrium. The first order approximation

of the density matrix is given by

Ry (t) = Ui (t)RoUn(~1), (41)

where Ry is given by (30).
To compute the matrix elements of Ry (t), we use the same method as before,
i.e.we insert a complete set of states between the operators

pi(ar,a,at,a',t) = (ara|Ry(t)|aa’y =
= [[ ualtiOlatayote Rolegax -
x (e} Uy (—t)|efa’y a2 HH d?afd?a H._” dZa}’.

k k

The mathematical details are in Appendix III (calculations up to first order ap-
proximation to the density matrix and the result given by (A20)).

Now the question is: What is the behaviour of a quantum particle coupled to a
thermal bath and under the influence of an external force? Or in other words, what
is the average displacement of such a particle? This question can be answered, as
soon as we know the density matrix. In terms of the creation and annihilation
operators, the operator associated with the position of a particle is at + a. So the
mean value of the displacement of the particle according to Eq. (26) is given by:

(a* +a) =Tr ((a* +a)Ri(2)) . (43)

We use again the substitution a* — &, a — .%m‘ mentioned in Appendix II, to

evaluate the matrix elements of (43). To find the trace required in (43) of all these
states we choose only the diagonal elements, and we integrate over all these states.
(at +a) = \ ‘,‘Am + |%4v (e, oy, D}&:SL , @NQ:.UuQa (44)
where ! . 1 g
D = M_..ml_wm_lmnﬁ_ D%y = m_..ml - d2a;. (45)
There are only two kinds of non-vanishing integrals that will appear in (44). These
integrals are the following

\8 exp(la’e™ ") D% = w\s exp [~laf? (1 - e=)] d?a = —L___ (45)

- T oo Tl — e~ Bhw

331



.\l _Q_naxﬁ:&wmxmw_sv@f = ._n.\oo la|* exp [—|af? (1 — e )] d%a =

oo w oo

1 2
= A~(o|umsv ’

The mQ.E:L formula for computing these integrals is given by (A9).
Using (46) and (47) in (44) we find that the average displacement of the particle

(47)

1s
F g .
An—+ + Qv = wﬂul AQ_E« -+ ml_Eu - Mv . AA@V

This is a result already known from Ref. [5] but we take procedure followed here as
very Interesting because we can proceed to the next higher order approximation.

V. SECOND ORDER APPROXIMATION

The first order approximation of the quantum particle in a system of other
quantum particles does not show any dependence on the motion of the other par-
ticles and the coupling of the test particle with them. The displacement of the
particle is sinusoidal as we can see from (48) and depends only on the external
force acting on it, a result in agreement with previous ones. We use the same
method as in the previous paragraph for the second order approximation of the
propagator. This can be evaluated with the aid of Feynman’s formula (13).

The propagator K1(7|0) from (37) will be used in (13) and the matrix element

(ara Ko(t|r)H'(7) K1(70)| o ar’)

will be evaluated according to the following integration
\AQ."Q_NAoQ_ﬂv_QnQ:XQmQ:_mRﬂ:ﬁ (7]0)|ata’) - D% :6&&. (49)
k

The first factor of (49) is given by (32) with the following substitution

t—t—71, o —a

, i —af.
The second factor of (49) can be evaluated with the aid of (A12) of Appendix II.
In our problem we consider a set of particles with frequencies close to the
frequency of the particle. Then the thermal bath will affect the motion of the
particle although the coupling is weak. The differences wy — w are small and in
our result we keep only the terms involving 1/(w; — w) and higher order terms.
All other terms are neglected because they are small in comparison to these. In
order to find the propagator K,(ay,a, oy, o', t) we perform the integration over 7
in Eq. (13).
The second order approximation to the density matrix is given by

NNMQV = QwAnvmoQuAluv Amcv
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where U,(t) is the evolution operator associated to the propagator with the follow-
ing formula .

Ka(x, @, af, o, 1) = (@xalUs(t)|ake’). (51)
The matrix elements of (50) can by evaluated as before, i.e. by inserting a complete
set of states between the operators and then by integrating over these states. So
the matrix elements of (50) are

~ = 1! ~ = P TN ]
\NAQ#.Q.QT_Qumv“\ .NMAQ&.Q,Q&“Q VHV.NNOAQ&.Q y O, O nuvx
~1 =1 1 / 2 112 1t 2 1111ry2 1 Amwv,
x Kq(ay,a", ay, o, —t)D%a"" D% D) Day.
k

The integrations involving the coherent states can be performed with the aid of
(A4) - (A8).

Finally, the displacement of the particle up to second order approximation will
be given by

a
(at +4d) = .\ ﬁﬂm + MMV P2 Amm?o\,&:&_ o UuQmﬁnQT (63)
olza k
According to Eq. (51) the propagator Kj(au, &, a},a’,t) will be given by

Ka(ag, @, 0%, o', t) = exp M arake ! 4 aale ™™ | x
k

x [1= fil)@e’ — fit)e}@ — gi(t)e}a® + gi(t)amaf?] x (54)
X exp Aa_l.wm 3 _cm_N : _aww_N 3 _gmj . _
srond —iwt —iwpt
=Y a——_  (55)
1 }AP: = CV
mlmt\.u - OImE«
)= F 2 O s ~oxr 2 0

We perform the integrations in (52), then the integrations in (53) and we keep only
the real part for the mean displacement (a* +a).
The final result is :
FC? 1 1
+ = 1 . .
.?+nvl MM Hlmnuas_‘ﬁlmluasvu mw?: Isvw?:lwev x

x Aml cos(wy — 2w)t 4 1 + coswt — cos(w; — w)tle™ PP 4 (57)
+ [cos{wi — 2w)t + 1 + coswt — cos(w; — w)t]e™ Phwrg=Fhw h
+ 2[cos(w; — 2w)t — coswt — 1 + cos{w; — Eﬁ?lu?&@.
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N ~.H.~:m 1s the approximation involving the third order dependence of the mean
isp MM@E@E of the particle in the inverse values of Aw.
et e result involves a summation over all frequencies that are close to the
Ommaro ma:%u_n% of the particle. Usually only one frequency, say wg, 1s close to that
particle and only one term remains in (57), the term involving wy.

The result (57) sho illati i
and is gt (57) shows an oscillation of the mean displacement of the particle

VL. SUMMARY

WmmuM”-meWEmB of Fnanmnaon.o.m a quantum particle with a thermal bath has.
led up to second order in coupling and up to third order in the difference

cmnimonmmmmum.o:mbome . i
b, .a woravmg_&mwu& frequencies of the quantum oscillators.

The procedure which was followed involved a perturbation method for the

Propagators of the problem i i
pre w<m,3mom. P and the use of the density matrix for the evaluation of

with .HWMMS“»&, up to first order approximation in the Propagator, are in agreement
previods ones (see for example Ref, [5]), but with our method. we can il
w_.OnMM\m to higher order approximations in the propagator. . o
. mxnmm. rﬂﬁ computed the mean displacement of the particle in the presence of
nal force and the results show an oscillation of the particle as expected.

VII. APPENDIX I

I . .
work n order to wmwmoz.s Some Integrations; that otherwise would require a lot of
X, We use a generating function defined as follows

00
F(\p)= 1 \ e el HAotuaga, (A1)

T

where a =z +iyis a complex variable and
d’a = d(Rea)d(Ima) = dzdy. (42)

The integration of (A1) gives the generating function
FOup) = T
- (43)
Using this formula we can compute the following integrals used in our work:

1 3
I_Q_»+y9+§m 2 _
I\Qa d*a = FY F( ) = pett (A4)

T
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~ u. 3 @

2 | ge—lel*+ratpage  _ Y — 1

a\am da = mtﬁ?_tv Ae {A5)
> [P eriagia = 1 4 e (46)
W_...\Qol_n_uan =0 (A7)
W\mol_n_umua =0 (48)
w 2n_-Alal? 32 3_

m\_n_ e _n_mau%_t. (A9)

Some other useful relations are:
W,\m«mwmlq_n_u+>n+§%§u AR e A&Hcv
T ?
2

W.\mauml4_n_u+>n+tm%n = Amﬂt + WA.WV ey (A11)

VIII. APPENDIX II

We are going to show that

(a|H(a,at)U(a,a%)|a) = H A.%W. mv K(a,a", (A12)
where H(a,a%) is a Hamiltonian of the form
H(a*,a) = Aja + Bia* + Ciata+ D, (A13)

and U(a,at) is the evolution operator with the matrix elements:
' ’ * je]? o2 -
(|U(a,a%)[e’) = K(@,a’) = eAd+Ba'+Cac’+D - Iofe- 1ok (A14)

In (A11) we have used K (&, a’) instead of K(ot/|a’0) or K(t) in order to indicate

that the propagator is a function of & and o'.
The operator at is the Hermitian adjoint to the operator a and operates only

on the bra form ({af) of the state vector |a). We start from the left hand side of

(A12) and we proceed by using the complex integrations of Appendix I.
(o|H(a,a*)U(a,a%)o’) = ‘

= [A1(A+Ca’) + By + C1a(A + Co') + Dylero+Be+Caa+D =157 - I

Tﬁ %m..f Bia+ Q_@.W. + Uu_. eAd+Ba'+Caa'+D o~ ﬁ_wol et =

da
o _ _
EAMN.QVNQPQY

(A15)

Note that according to our notation in the differentiation of K(&,a’) we do not
include the factor e~121’/2 ¢=1o'*/2 which remains unchanged.
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IX. APPENDIX III

Evaluation of the matrix elements of the first order approximation of the den-
sity matrix

(anar| Ry(t)] o) = (el U (8) RolUs (—t) . (416)
We start by computing the following integral
\ADnQ:_m.\o_Qn\QEV (ag'e”'|Ur(~t)|a}a’yd2a™ .._.|H 2oy (A17)
k

The second matrix element of (A17) is given by (37), if we substitute ¢ by —¢ and
ok, @ by o}, a™. The integral (A17) can by written as follows:

\C — mlmaev HHQ - mlumeavﬁe anQn\mluaer +a"a"e=Phw |
k k

- I.MU ~QE~ N _Qt_m _ M _Qw: 2 B _Qi_m y
T 2 2 T 2 2

M ” =1 i - i
x exp ay Q»..o_::ﬁ« + Q\:Q\G.E« X
k

X (14D De(=0)(E'E"+ aa') + 3 Bi(—t)(a'a’ + afa™) + A(-t)@"+ o)
k k

_Q\&t_w ~Q:\_N _Q\_N _Qs_N v
Xoun l | — kl 2 2_ i
. . (A18)
The integrations can be performed with the aid of (A4) and (A5).
In order to find the matrix elements given in (A17) we multiply K, (aagtlaya-
0) given by (37) by the result of the integration (A18).

The final result for the first order approximation to the density matrix is:

pi(a,ax, o' o, t) = (1 - e~ Fhw) HC —e PR exp Mm»awmvuaﬁ + aa'e Phe | x H .

k k
X ﬁw + NU»QV A@w@..._u Q“nm|h.w:.;¢m2xumelhmEmmEuv +

+ M Ei(t) (axa'e=Phugivt | aje Fhureivetz) 4 A(t) (a+ Q&lm?omi: x
k
X T + M Di(~t) (ape™iwrte=Ftun go~iwto—phw + aja’) + (A19)
k

& M Ep(~t) (ape™iwte=Fhunys o Qmm«mumiméasv +
* .

3 2 2 712 112
+ A(=t) (Ge e Ph 4 )] Lexp (Sl o~ feg o
(=) ( +.o;_ exp M.u 2 T2 T2 )
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IPUBIIHXKEHHE BTOPOI'O NIOPANKA CPEJHET'O PACCTOAHUSA
9ACTHII B TENIIOBOM BACCERHE C [BAXKEHHEM BHEIMIHEHN CHNOH

B pabore mayvenno saammopeiicTBEE XBAHTOBON JacCTHOH C TENNOBHM GacceMHOM
KBAHTOBHIX OCHHIATOPOB NPH NeHCTBEE BHeuwHeR cuan. PacarTanmo B IPHGIEXEHHR Jo
BTOPOrO MOPARKA MPONAraTopa Cpefiiee PacCTOSHHE TacTHN. Temmonok Gaccelin npenmno-
maraerca BpammoBcxum ¢ xapaxTepEcTEYecxEME YacToTamm GrEoxEME YacToTaM wac-
THIl. YCTaHOBIEHO, YTO CPefHEe PACCTOAKEE YacTHR OCHEIIEpYeT BO BpeMenn. Temnep-
ATYPHAA JABRCHMOCTE CPEIHEr0 PACCTOAHEA TaCTHI, NORIHHACTC SXCHOHEHIEATBHON 3a-
BHCHMOCTH.
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