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CONTRIBUTION TO THE EVALUATION
OF THE TENSION
OF POLYMERIC CHAINS WITH JUNCTIONS

KOSTAKIS, G. C.9, Kifissia, KOSTAKIS, C. G.2), Pireaus

The tension of a molecular network has been studied by Treolar [i]
macroscopically by considering the deformations of a solid network. When the
positions of the junction points between two macromolecular chains are known,
a microscopic point of view is necessary.

Statistical mechanical methods of equilibrium have been used to evaluate
the tension of a polymeric chain and then the tension of polymeric chains that
are jointed together with permanent junctions, by considering the free energy
of the system.

The tension is shown to increase when there exist junctions, i.e. when
the motion of a chain depends on the motion of the others. This is also an
experimental fact.

The dependence of the tension on the position of the junction points has
been studied and also the dependence of this tension on the number of molecular
units of the macromolecule. The result has been compared to that for the
macromolecules without junctions.

L INTRODUCTION

In order to obtain a kinetic theory for elastopolymers the bead-rod Kramer
mode [2] has been used, but an elastic restoring force has been allowed on the molec-
ular units with a temperature dependent coefficient of restitution. This restoring
force used by Rouse [3] and Zimm [4] gives a Gaussian chain.

In the present work we study the tension of a chain with its ends fixed at
specified points. Since the tension is proportional to the length of the chain, the
molecular may be regarded as having an elasticity governed by Hook’s law. The
method followed is a statistical mechanical method of equilibrium. This tension
has been calculated by Treolar [1] for a molecular network by considering the
deformations of a solid network from a macroscopical point of view.

The method we use allows calculations of the tension of a chain having junc-
tions with other chains and we can see how junctions affect the tension of a poly-
meric chain in a microscopical point of view.
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II. THE TENSION OF A CHAIN

A Gaussian chain has a potential energy given by

U = ‘W:HH IHcvu+...+AHZI_ IHZIMVNH_ G.v

where 8iT
e 2)
To,%1-..,ZN-1 are the position vectors of the N molecular units and ! is mean

value of the typical bond length.
The coefficient o has been evaluated from

\coo rP(r)dr

S%o P(r)dr’ )

(r) =

where r = z; — z;_, has been equated to the typical bond length /.

The coefficient « is temperature dependent, as expected, because the restoring
force depends on the bond length and the bond length depends on the individual
motion of each molecular unit. .

If f is the tension of the chain, the potential energy of the chain contains the
potential energy due to the tension, i.e.

N=-2
Uy =bkT Y (241 - 2;)* - flen_1 — o), (4)
J=0.
where
b= 2 (5)
T oxli?

For such a statistical mechanical problem the distribution is a Bolzmann dis-
tribution and the probability takes the form:

Pylz] = 9 exp AIWQ.SV , (6)

where Cy is the normalizing factor given by

] N-1 -
o= [ oo (-gp0r) Mass| @
and the symbolism Py{z;] stands for

&U\AHOMH:HN‘ bz .“&ZIHV.
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Using the probability (6) and integrating with respect to all z;’s expect x, and
ZN-1, the probability Pas(zn_,, zo), that governs the position vectors of the end
points can be calculated (see Appendix A).

. Therefore for a Gaussian chain with tension f, the probability that the first
molecular unit is at zy and the last molecular unit is at zx_, is

b
II.M?ZL - zo)? + M..W_HZL - Ho_k_ . (8)

wm\A&ZITHcV = Qn.‘ exp Mlz

where Cy; is the normalizing factor given by

Coy = Aizvu cvus .w Té Twﬁﬂ“@:_ WL “ )

where V is the volume obtained by the integration over the last variable.
Using (8) the mean length of this chain can be calculated

(lzn-1 = zo|) =

b
= \_szL — zo|exp TZ —5 (zN-1—z0) + %_azu_ - ao; dzy_1dzo =
b

=kT— [ exp _HI.Zi (zN-1 — acvu + %_HZL - no; dzy_1dzy =

o]
of -1
FN 1)
2kT6

(10)
The dependence of the tension f on the mean length of the chain can be obtained
from (10) by substituting b from (5)

4 1
F=akry (N=1)2

(lzn-1 = =ol). (11)
The tension f depends on temperature T in a linear way (see Anthony, Caston
and Guth [5]). The result is similar to that of Treloar [1] but this method can
be used to obtain the tension of a chain when there exist Junction points.

The shear modulus G is the tension per cm? and for polymer samples in the
form of flat sheets as ethylene glycol dimethacrylate (EGDM), triethylene glycol
dimethacrylate (TrEGDM) and tetraethylene glycol dimethacrylate (TEGDM), we
have experimental results. (Katz and Tobolsky [6]). The 10 sec. shear modulus
G is linear dependent upon temperature in the region of room temperature up to
200°C. ‘ .

This experimental result is in full agreement with our theoretical one, which
shows this linear dependence of the tension on temperature.
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III. EFFECT OF JUNCTIONS ON THE TENSION OF A CHAIN

According to our model (Flory [7]) a polymer mixture exists in a dynamic
state with intermolecular interactions being formed and broken continuously. The
equilibrium condition can be expressed by (Howe & Coleman [8])

> (Rrij~ Rpij) =Q =0 m% =0,
ij

D

where Rp;; = Nijrij/ M...ﬂ. Nijri; 1s the rate of deformation, i.e. the number of i—j
contacts multiplied by the relative frequency and

mwm,..u. = Gm@.\m\memﬂ&.

i

is the dissociation rate of the i — J contact.

®;,®; are the effective site fractions of unbonded species. The problem of
crosslinking efficiencies was discussed by Loshaec and Fox [9], Shultz [10]
and Hwa [11].

The plots of the effect of the position of the crosslinking on the tension of
the polymer chain are in agreement with the plots of Howe and Coleman [8],
Moonan and Tschoegl [12]. )

By junction points we mean the interlocking of two molecules that belong to
two different chains in such a way that they behave mechanically as one molecule.

The number of such junction points will be theoretically two per chain (Tre -
loar [1]). .

Treloar using the original theory of Kuhn -calculated the tension of a vul-
canized rubber network by considering the deformation of the rubber using the
extension ratios Ay, Az, A3, under conditions of constant volume. The problem of
polymers with junctions can be treated microscopically by considering a group of
polymeric chains, where successive molecules of the same chain are permanently
connected to each other by primary chemical bonds and two molecular units be-
longing to two different chains are also connected to each other to form permanent
Junctions.

Two macromolecules are considered at the commaiaw Each macromolecule

consists of N molecular units with position vectors a%v ; HM Yooy Hmw , for the first
chain and Hmuv_ HMS ye ey hmw_ for the second chain. The m-th molecule of the first

chain is jointed together with the k-th molecule of the second chain. These two
molecules can be identified using a §-function.

The probability distribution for the molecules of the two chains will contain
the potential energy of the two chains under tension conditions and it will be given
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by

N-1
PN TM.:_HMS_ : A_a%:mems =
j=0
= a N2 e @)\ 2
= Can exp To AHMNH - &M vv —-b M Aa:_ -z v + (12)
j=0 =0
f f @) 1T 4o )
1 1 2) (2) 1 2 1
+ m_aw,\vl - am V_ + Mmu_sfl -z __m Aﬁm:v —zy v .m._..uHo dz;’dz;”,

where Cyp is the normalizing factor

N-2 2 N-2 3
M 1 1 2) (2)
Qu?”ﬁ\m%mv*l@ AH.M.Nw.IHM vv |vMA8M.+H|Hu. v +
j=0 ji=0
f ., L f .o (2)
+ I»H_H?W_ - sm v_ + I.EJ_&Z.._ -y ; X (13)

N-1 .
x 6 Aamv - amvv “—|._” QHMSQ&.SV .
j=0

The probability distribution for the end points of the chains can be evaluated
from (12) by the Fourier transforming the § function, (See Appendix B) and is
shown to be

2b
Py(z0,2n-1)dzodz N1 = Crexp _IZ —— (2n-1 - zo)’ —
(K — m)? u
) -1 20)" + (14)
Q<ICT:AZISIC.TNAAZINIC_AHZ 1 o)
2
+ m%_HZL - ac__ dzodzn_1,

where Cj is the normalizing factor.
The mean length of the macromolecule is given by

(lzv-1— 20|} = \_HZL — 20| Pa(x0, zN-1)dzodzy_; =

= %% m%ﬁAlZPIvWAHZIu - Hcvwl
b (K —m)? .
- ZI:SAZISIC+~AAZINIC_AHZL zo)*+
N-1
+ oy - ol }dzodeny = ooy |
g ETb T+ _
m(N-m-1)+K(N-K 1)
(15)
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and the tension f is

(k — m)?
mN-m-1)+K(N-K—1)

f= |vl»m..~ww+

N-1 T_SI —xzol).  (16)

This result in comparison with (11) shows an increase in the tension by the amount

b (k — m)?
N - w».HSA?ISIC.*.NAZI K — CA_HZ.._ — zol)-

This method can be generalized when there are M chains and each chain has N
molecular units. Two molecular units of each chain called mU) and (n¥) > m()
have been jointed with two molecular units belonging to other chains.

The tension in the case of M chains with two junctions per chain, can be
evaluated using the same method and it is

2
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3 ?S _ asv
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Fig. 3. The tension f as a function of K,
where K is the molecule of one chain that
is jointed together with the m-th molecule
of the other chain. (¢} m =4, (+) m =5.
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Fig. 5. The tension f as a function of K,
where K is the molecule of one chain that
is jointed together with the m-th molecule
of the other chain. () m =8, (+) m =9.
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Fig. 4. The tension f as a function of K,
where K is the molecule of one chain that
is jointed together with the m-th molecule
of the other chain. (o) m =6, (4+) m =7.
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Fig. 6. () The tension f as a function of
the number N of molecular units of the
macromolecular chain in the case where
there exist junction points. (+) The ten-
sion f as a function of the number N of
molecular units of the macromolecular
chain when no junction points exist.

The tension f for the two chains can be plotted from (16) as a function of the
molecular K of one chain that is jointed together with a molecular of the other
chain. The plots are shown in Figs. 1, 2, 3, 4, 5 for N = 10.

In Fig. 6 the tension f from (16) is plotted as a function of N. All junction

Fig. 1. The tension f as a function of K,
where K is the molecule of one chain that
is jointed together with the m-th molecule
of the other chain. (s) m =0, (+) m=1.
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Fig. 2. The tension f as a function of K ,
where K is the molecule of one chain that
is jointed together with the m-th molecule
of the other chain. (o) m =2, (+)m=3.

points have been considered to be equally probable and a mean value has been

taken.

The dotted line shows the tension f as a function of N — the number of
molecules of the chain-in the case that no junction points exist. The increase can
be seen from the graphs up to N = 10.
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APPENDIX A

The integrations in (6) can be done step by step. The first integration over
gives

T

\.mxv {-b _.TS —z0)? + (z2 — spvd v dz; = Awlvvu\u exp —MITMA&N - uovuﬁ . (18)

The second integration over z gives

\ exp A b m? — 20)? + (25 — 8%3 = AM.V o T%S - acvn_ (19)

and by using the method of mathematical induction the last integration over zy_»
gives

\sG AL T\ ~1 3 (@N-2 = 20)* + (zn-1 + E,Tuiv dzy_2 =

- AM& HwUSQé Tzl_lluaz'_ - ai .

So the probability Pyr(zn_y,zp) is given by

(20)

NUM\AHZITHOV ” QM\ oun_u Ml@l&l

3 (zn-1 - aovu + N.MIJ_HZL = Ho; (21)

where

b -1
Cyy = A\ee T? — (en-1 - zo)* + $_azu_ s ac; mac&z-_v

= (s :v.s 7o el -

where V' is the volume obtained by the integration over the last variable.

(22)

APPENDIX B

The probability distribution (12) will be evaluated by Fourier transforming
the é-function .

o]
§(z() — Hmwvv — ,\ exp ﬁlminmv - Hmvv_ dg. (23)

-0

And the probability distribution Py(zg,zn-1)dzodzp_; for the end points of the
two macromolecular chains will be evaluated by integrating over the variables

320

HM:_ .. ;s&w% HMST.;.@%W” and ¢q. The integrations can be done by making

the following transformation
(1) _ @), (1)
Rk @

.QMC = “Smwv = anln = ..cm,wvlm =0.

The X %:,m and X h@,m are solutions of the following differential equations:
XM = .%am?. -7,

: 25
XO = Lgr - 7y o)
T 2% '

where the continuous variables 7, 7/, 7/ correspond to the discrete variables j, m, k.
The boundary conditions are

XM = o0, XD =0 xV 2,0 x@ _ @

=y =2 1= EINZ1 AN T TN -

The solutions are

) ) ,
W _ [IN1 "% Y. W__ Y N _1_m
X=\TNDT )it g oW L mit
iq .
+ 53— m)O(i — m)
@ _ [ == @ ig =
xh. = j .N+Ro +§A\<|~|Nﬂvh|

ig . .
— 53 i — K)8( - K),
O(j — m),0(j — K) are step functions.

By substituting am:,a.ms from the transformation (24) in (12) and by inte-
grating over &C and &5 the probability distribution for the end points is given
by

P, 20,5, 220 a0 =

N-2 2
= asaa) s, o e[ 4T (X8 - 1)’ -
j=0

N-zoo 2 \ (27)
-5 3 (x3, - x{ vv ~igX® +igxP+
j=0
f 1 1 2 (2
+ m Quﬁ@k Iubm V_ + Tf@wa I\/\o :zmﬁ
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where Cj is the normalizing factor.
From (26) the following relations are valid

Cv L 2 — i
X INAVI N-1 0 +.M>E

J+1 I T NI 270
(2) @ _ 2, -2 g (2) 38
Xin =X = —4— T
where
h:nc.+_|sv®_¢.+Tsvlclsv@c{ilzmﬂs
4D = (G4 1— K6l ) ) N-1-K (29)
7 EUHI= KOG +1-K) - (- K)8( ~ K) - 1=
~N+1
A= sm-
¢ T forj<m-—1
A _m . -
j N1 forjzm=1 (30)
K-N+1
\wa.mv” ] -
J N-1 oy S H -1
K
A@_ 48 ] -
¢ . forj>K-1
N-2 @ N-2 @)
N N
A7 = A7 =
j=0 j=0
N-2
(\2 _ m(N —m—1)
M?r. v Y | 0
j=0
N-2
MA\»QVVMHNAZIkIC
j=0 ! Z.IH .

The probability distribution Py(zg,zn_1), after the integration over ¢ and the
identification of the end points, becomes:

2b 5
Pa(zo, zn-1)dzodzn_; = Cpexp TZ = —?2L — zo)?—
_ b(K —m)? 2
Azf_éizuzT;v+mc<awnhz?zL:aa+

2f

+ m_ﬂ2I~ — Ho_ &.HOQH\/\Iu«

where C is the normalizing factor.
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SAMETKA K OIEHKE HANPAKEHUA
B [TIOJIUMEPHBIX HENOYKAX C COENUHEHUAMHU

HanpsxeHne MonexynapHHX ceTox 6buto H3yTeHo Makpockonmyeckd [1] ¢ npamene-
HEeM fedopManuii TBepisIX ceTok. B ciywae, xorga Towxm COEHHEHHA MEXAY MaKpo-
MONERYNAPHEIME HENOTKAME 3HAKOMBI, XeOGXONHMO IPHMEHATL MaKpPOCKOMNIECKH i nop-
XOf.

[Ipumenens paBHoBecHbIe METONBI CTATHCTAIECKON MeXaHHKE HpPH ONEHKEe HaUpsxKe-
HAA MONEMEPHEIX Henodex. B ciyvae o6pegnnenns nenover ¢ mocTosinsMu COeHHEHHA-
MH, HAMpAXKEHAE ONEHABACTCA C NPHMEHEHHEM CBOGOJHOH SHEPIEE CHCTEMEL

[orasano, 9To HanpsaxeHne HapacTaer XOI'TIa CYWECTBYIOT COENEHEH N, KOrfa IBH-
KeHHE NeNOIKA JABHCHT Ha {BHXXEHHHE OCTANBHLIX. DTO NOKAa3aHO TAKKE B SEKCIepHEMEHTE.

Hsydena saBECEMOCTE HANpiKeHHR OT Pa3MelIeHEA COCIHHAIOUIEX TOYEE H TaKXKe
OT THCHA MONEKYIAPHLIX €HHEN B MakKpoMonerylne. PesynrTaT cpaBnmBaeTca ¢ MaKpo-
MONEKYTAME HEEMEIOWAME COCIHHCHHA.
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