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COMPACT GENERAL RELATIVISTIC
CONFIGURATION OF CHARGED MATTER AND
SCALAR FIELD IN D SPACE TIME DIMENSIONS

WOLF, O.:_ North Adams

The general relativistic problem of charged matter coupled to a symmetry break-
ing scalar field is studied in D space time dimensions. The interior and exterior
metric are found using a certain approximation and the condition that the normal
pressure vanishes within the charge configuration. The matching of the exterior and
interior solution leads to expressions for the mass and charge of the configuration.

I. INTRODUCTION

The problem of spherically symmetric solutions to the Einstein equations cou-
pled to matter has certainly been a well worked field of research. The historic
interior Schwarzschild solution (1], charged fluid spheres [2, 3] and solutions in-
volving a scalar field coupled to matter [4] represent a class of problems that have
been thoroughly studied in the past. The problem of compact configurations of
fermionic matter received attention because of the possibility that it might rep-
resent a neutron star. In fact, limits on the maximum mass of a neutron star
have been established to within an order of magnitude of a stellar mass [5]. The
motivation for work on the stability of gas spheres arose from the discovery of
quasars which were conjectured to be of galatic size and became unstable through
gravitational instability. Both Chandrasekhar [6] and Wright [7] did much of
the original work on quasar stability. In a modern context the existence of super
gravity theory has suggested the presence of scalar such as the dilaton and the
graviscalar, which in principle couple to gravitation to form compact bound con-
figurations [8, 9]. Questions of just how scalars couple to gravitation remain for
the most part unanswered and at present models arise primarily from arguments
involving symmetry. Since the superstring always leaves a scalar at low energy it
would be of interest to find out just what type of configuration arises when such
a scalar couples to gravity in D space time dimensions. In this paper we study a
simple model of gravitation coupled to electromagnetism, a scalar field and matter
with given equation of state that may simulate conditions near the pre-G.U.T. era.
Quite long ago Florides [10] studied a spherical configuration of matter in GR
with vanishing normal pressure and recently Krori et. al [11] studied the same
problem in D space time dimensions with the cosmological constant present. In
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our analysis we study a configuration of gravitation coupled to electromagnetism
and symmetry breaking the neutral scalar field along with matter of the prescribed

that within the configuration we study, the scalar field at the center cannot be
either in the false vacuum or true vacuum to have a spatial variation over the
dimensions of the object we study. This fact may have significance in higher di-
mensional inflationary cosmology wherein the scalar field is assumed homogeneous
prior to the development of perturbations. The possibility that such higher dimen-
sional configurations may arise in the cosmos has been discussed by Sakharov,
wherein he has suggested the presence of domains of higher dimensionality, non-
trivial topology and varying signature which may contmunicate with the usual
world of 4 space time dimensions through electromagnetic effects [12). It is in this
spirit that the following investigation be taken, both as a solution to a problem in
higher dimensional gravitation as well as a probe to higher dimensions.

II. COMPACT CONFIGURATION OF ELECTROMAGNETISM
AND MATTER COUPLED TO A SCALAR
FIELD IN D SPACE TIME DIMENSIONS.

We begin our analysis by writing for the mvrminm—\_v\ symmetric metric in D
space time dimensions
(ds)? =e"(dz%)? - e*dr)? — r3(d0;)? — r2sin? 01(d©,)?
— r?5in? O, sin? ®wa®uvm — r2%sin® O, 5in’ 0, - .. sin? ®b|u30vu

(1)
with
0<r<oo, 0<6; <, 0< P <2r.
For the Ricci component we have
e 1 N2 (v-A) ~. " (v—2A) 1 Y a(v=2A) Abl wy ' (v—-A)
Roo = A?vo Iwcm +Ae>a 5 ve ;
v 1 (D-2)
R = . (V2 Dy _ by
nE g )T g >
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mmeAblem -1) - 3 (A =), (2)
\www = mwmu mm_uw ®_
Rp_i1p_, = Ra»sin?©; — sin? Op_3(dd)2.
For the lagrangian of the electromagnetic field plus scalar field we have
1 P8, Ay /., 4\2
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where we have included the symmetry breaking scalar field specified by the poten-

tial ,

For the matter with given pressure and energy density we have for » < R

T = ¢,

N,.M—. = C.

T2 = —P,
ﬂ%u& =-PF

(o = constant energy density). Here we have vanishing normal pressure tor the
EMSQ specified by T} = 0 for » < R. For the field equations for the electromag-

netic field we have

¢ Mws{lm = —gJ¥, ()
ozv \ K

dz° —-vf2. Amv
where Fyp = E(r), J®= bomﬂmﬂ = poe :

here po = constant proper charge density for r < R. Eq. (5) gives for r < R

9 (A 0-2)p(ye= (42112 = o p(D=2)gmwi2 (42
ar \ K

o Kelvtr)/2

T DDA 2y, 7
NT.VH%IVI\ pol e =ds (

: ; D-2
for r < R. For normalization (that the right-hand side represents Q/R ar

r = R) we choose
$ (D-1)/2
=7 P
v (B=1),
2

o 4n (D112

F=7poy,
)

For the scaler field equation we have upon varying Eq. (3) with respect to @

(D -1). , (8)

A
~0¢ — Ay enfml“ =0 (9)
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giving in the approximation e* ~ e¥ = |

1 d
e Gty I (10)
2
When Eq. (10) is written in more detail we obtain
rP-2)g + (D - 2)p0-3 4
;rr = < g 2 - .’w b=z o
) =A@ (07-Z )01y (11)
Eq. (11) can be rewritten as
@ + (D - 2)rd, — 2., A1}
. A vﬂ r hwe ¢° — NM r°=0. AHMV

Hm we Oo=m~hm®~ ﬂrm OCWZO ﬂ®-: as a ~v0~.ﬂz~ﬁv@ﬁ~0= ﬁ——m GDCN.H—OZ H& $~&TOC& —me
’ ﬁ v

P+ (D= 2rd, + 4,807 = 0, (13)

Eq. (13) always has the power series solution

_w:ro:w r ,Hﬁo. Eq. (12) with the cubic term can be solved in the perturbation theory
principle about the unperturbed solution. Thus, if the unperturbed solution

converges for the interior of the charged sphere we studied, the perturbed solution
will be convergent. If we substitute

into Eq. (13), we find

o = a2 4,
-1+ (D=9 ()

which gives

. a;
lim — =.
1—00 dj_9

Thus the UOSWn series for the unperturbed solution converges for all r < R and thus
A::.W power series for the perturbed solution will always converge for all r < R since
1t 1s constructed from the unperturbed solution in perturbation theory K rovided
the term 724,93 in Eq. (12) is small relative to the linear term A, ®r? '

To develop a power series solution of Eq. (12) we explore ~ .

o0
M a;rt

=0
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in Eq. (12) and equate the coefficients of »* up to o = 4 equal to zero to obtain
the first four terms of the series, this gives

a; = O_
_ noA\»maw - \»_v
@=""30—9
ry 0, (15)
_ —Ajag + 3aday A,
a4 = 4D+ 4
m—:qumm we choose GAN = Ov = O_ then ag = O, a4y = as = ag = aq--- = 0 and

the entire domain of 0 < r < R is in the false vacuum (& = 0). Next suppose
we choose ®(r = 0) = /A;/As, then a; = 0, ay = 0, a3 = 0 and the entire
domain of 0 < r < R is in the true vacuum (¢ = \/A;/A,). Thus to develop an
inhomogeneous solution (® varying with r) we must have ®(r = 0) # 0, \/A,/A,.
Let us call the central value of the field ®., then from Eq. (15) we have

ap = ¢,
a; =0,
P (4297 ~ A1)
a; = T 4D +4 (16)
az =0,

_ 302a2A; — Ajay

da = 4D + 4

For r > R we choose the true vacuum so that it satisfies Eq. (12) for » > R,
thus,
P=4/— forr>R.

If we match

to the approximate solution found in Eq. (16) for » < R, we can tune &, so that

the approximate solution given by

4
P = M a;r
i=0

with coefficients given by Eq. (16) matches smoothly to the exterior true vacuum

solution at r = R given by

P =

D>|}

o

261



this can be done to any order of r by calculating ag, ag, etc. and matching the

interior solution to
/A
Az

wM r o= M by choosing @, to have the appropriate values to accomplish this matching
at r = R.

Thus,

4
®=>"ar' forr<Rg (17)

i=0

with a; given by Eq. (16), and

A
b = Mw for r > R.
The m:u.o,\m solution for d is continuous at » = R but its derivative is not. To find
a solution &&Q.m_: the field @ and its derivative are continuous at r — R we take
the approximate solution given by Eq. (17) with coefficients given by Eq. (16) and
equate it to
A,

4, atr> R

and equate its derivative to 0 at r — R, since the derivative of w Amxﬁmlon

. . . . AM
solution) is zero at r = R. This will place a restriction on @, and R and determine

the central value of @, and R in terms of A; and A, since equating

A do
NM at r = R, m:amﬂHo atr= R

d =

gives two equations for &, and R in terms of MH (from Eq. (16) and Eq. (17)).
. - - . - .»w
éro.: we do not insist that the derivative of @ is zero at r — R, we have a less
restrictive solution with arbitrary R.

We next solve for Fioforr < Randr > R If we approximate e* ~ 1 e’ ~ 1
for r < R, we have from Eq. 7 _

Nm.w.ﬁo
E(r)=
") =1 tie)
For r > R we have from Eq. (5)
J /4
— [ ZpD-2) =
> A>;. E)=0 (19)
4 4
(D-2)p __ .
or v JE=Q >.,v (@ = total electric charge of configuration).
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Thus

Eir) = IE| forr <R (using e’ =e* ~ 1),
4D-1) (20)
Q .
E(r) = D3 for r > R;

for r > R we have used the condition A+ v = 0, which follows from the (})and (9)
Einstein equations and the form of the electromagnetic energy momentum tensor

for r < R, which is

4
(Tu)EM = um,: FopFof - 7w (21)

With » > R, for the scalar field which is constant we have T} = T¢ and from
Eq. (21) we have T(})ga = T(3)em for r > R. These two contributions to T}
and Tg insure A+ v = 0 for » > R. Also equating the two values of E(r) at r = R
from Eq. (20) we have

K .
Q= w}mﬁDli (22)

A

IR

{in the approximation ¥ = e 1 for 7 < R); this relation gives

Q= Wﬁ&mbe for D =4.

This is the mass-charge relation in the approximation e* ~ ¢” ~ 1 for r <R
We next evaluate the exterior metric. For the scalar field we have the energy

momentum tensor from Eq. (3)

2 OLg 9 (0°90,9) As 5 A\?
yEm 2 = 5,00,8 - AT 200) Lo (g2 A1)
T = =5 g = 020 3 T A (23)
for r > R this gives
T =Y = \Mm @ — m. =0, sinced = m for » > R. (24)

For the electromagnetic field we have for » > R from the second of Eq. {20) and

Eq. (21) 20?
(25)

= [r2b-a

Tr =0

Combining Eq. (24) and Eq. (25) and inserting them in the (3) in the Einstein
equations for r > R we have

Qbuul,l .:unﬁlmam. .N D-32 NQM
Mﬂﬁﬂ € v 'AUIMY g D-9 T ﬂ!ﬂwﬂ . AMQV
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Integrating Eq. (26) gives for » > R,

ety 2GM D 321G Q2 Ny
e OVt e s e = ()
87 (D-1)/2
Here F(D) = , A =(D -1~
(D~2)ap_," 702 ( :Bn 1)/2)t
We next find the interior metric. The total energy momentum tensor for R > r is
®,.)2 A, (. A \2 K p2p?
ﬂch.*.A.ﬂ +|wA0 2 _ A1 K p§
0 =€ 5 7 (@) %) s Iy (28)
D)2 A AIN?  Kp?r2
Ti=_(Be)  As o A Cpgr
_ 2 T ?S ) T8p-1e (29)

Eq. (28) and Eq. (29) follow from Eq. (4) for the matter and Eq. (21) for the
mwmnnnoawm:oan field after inserting the first of Eq. (20) for r < R, (approximating
€” = e = 1) and from Eq. (23), where we would insert the perturbed solution
from Eq. (17) with coefficients calculated from Eq. (16) with the field at the center
of &.. For the (3) Einstein equation we have for r < R

d
—(rP73e=) =(D = 3)r(P-4) _ B 2 v #(D=-2),

dr

ct D -

Y P

€0 + .
2 4 As 8(D-1)2 |’

Integration from 0 to R gives

?LFHT?QA 2 v I

¢ \D-2) RD-3

R 2 2 - 9
Y R Y A I T
\o 0Ty 7 \*0r -3 e A (30)

When Eq. (30) is Ewﬁorm& to Eq. (27) using Eq. (22) to eliminate po and inserting
Eq. (17) m.On 03 Into Eq. (30), an expression can be found for the mass of the
configuration in terms of €0, @, R and the parameters Ay and A,.

O:w final task is to find e” for » < R. From the (}) component of the Einstein
equations we have for r < R

1(D-2)(D-3) _ 1
2 e = ) (D =2y
87G $,)? : {plr?
= -2 (-Q +mm?:m;& + Aeer”
c 2 y A 8(D~1)?
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or

(D-3)

v = (e* - 1)-

1 LA
@s‘Q ﬂ@» ‘Ae. v 2

(D -2) 2 4

Integrating gives

_[T(D-3) 167G
o= e e -

9

"o (2. A 2 A’ Kpgr? ol
_&r) d(r)2 . 2L . 1
L 4\ re 9 + 4 Tv \»m + mﬁbl wvw nT..TQ Aw v

In Eq. (31) we use e* calculated from Eq. (30) (in this case we integrate from 0
to r in Eq. (30) to obtain e*(r)). When Eq. (31) is matched to the natural log of
Eq. (27) at r = R we may obtain the integration constant C in Eq. (31).

Thus we have obtained the interior solution of a charged fluid sphere with
vanishing normal pressure coupled to a symmetry breaking scalar field as expressed
in Eq. (30) and Eq. (31) for the metric, Eq. (17) for the scalar field and first
of Eq. (20) for E(r). For the exterior solution we have the metric expressed in

Eq. (27), the electric field expressed in the second of Eq. (20) and the scalar
field is constant of value Wur for r > R. The mass of the charged sphere with

vanishing normal pressure coupled to the scalar field is found my matching Eq. (30)
to Eq. (27) at r = R.

CONCLUSION

The above analysis has provided us with a solution for the metric for a charged
sphere in the presence of a symmetry breaking scalar field in an arbitrary number
of dimensions. In the early universe it may very well be that the breaking of
a G.U.T. symmetry by a scalar field may occur in a dimension of space time
higher than four, in that case the collapse of a gravitationally bound object in a
higher number of dimensions would release energy that might be related to ~y ray
burst phenomena. Galdi [13] has discussed the possible origin of v ray bursts as
emerging from objects with an internal non-linear electromagnetic field structure
and Ressell and Turner [14] have surveyed the entire spectrum of extra-galatic
radiation. It is not out of the question that certain features of the spectrum might
reveal the presence of higher dimensional bound configurations of electromagnetic
field and matter. Recently Sokolwski et al. (15] have discussed electromagnetic
wave propagation in a multidimensional universe with the explicit formulas for
the D dimensional frequency and the four dimensional frequency emerging as a
consequence of studying the propagative equations. Perhaps with a combination of

265



ACKNOWLEDGMENT

I'd like to thank the Physics Departments at Williams College and Harvard
University for the use of their facilities.

REFERENCES

{1} morimnmmnr:n_. K.: Sitzungsberichte Preuss, Akad. Wiss. 424 (1916), xxx.
[2] Bohra, M.L., Mehra, A.L.: Gen. Rel. and Grav. 2 (1971), 205.
[3] Omote, M., Sato, H.: Gen. Rel. and Grav. 5 (1974), 387.
{4] Brans, C., Dicke, R.H.: Phys. Rev. 184 (1961), 925.
[5] Cameron, A.G.. Ann. Rev. Astron. and Astrophysics & (1970), 179.
[6] Chandrasekhar, S.. Astrophysical J. 140 (1964), 417.
{7] Wright, J.p.. Phys. Rev. 1396 (1964), 288.
[8] Ericson, T.E.O, Richter, A.: CERN - TH/5473/89 - preprint (1989).
[9] Gradwohl, B., _Am;m::m::_ G.: Nucl. Phys. B 324 (1989), 215.
{10) Florides, PS.. Proc. R. Soc. (london) 4 237 (1974), 529,
[11] Krori, K.D., Borgohain, P, Das, K.: Gen. Rel. and Grav. 21 (1989), 1099.
[12] Sakharov, A.D.. Sov. Phys. J.E.T.P. (Eng. translation) 60 (1984), 214.
(13] Galdi, D.G. Comments on Nud]. Phys. XIX (1989), 137.
[14] Ressell, M.T., Turner, M.S.: Comimnents on Astrophysics XJV (1990), 323.

[15) Sokolwskij, L., Littrio, M., Occhionero, F.: Int. Center for Theoretical Physics preprint
IC/89/199 - Miramare - Trieste (1989).

Received April 5th, 1990
Accepted for publication March 13¢h, 1992

KOMITAKTHA A OBIIIAS mum.ﬁmﬂ.&..:wSOHOuﬁrm
KOH®UTYPALLMS 3APAKEHHOU MATEPUU

U CKAJIAPHOrO ImoJn
B D PABMEPHOM IIPOCTPAHCTBE BPEMEHU




