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THE BIFURCATION IN A
DIFFUSION-HYDRODYNAMICAL
SYSTEM WITH O(3) SYMMETRY

JEX, LY, KREMPASKY, J.1), Bratislava

In this paper we show that the bifurcation in some diffusion-hydrodynamical
systems with O(3) symmetry does not start in general from a homogeneous but
from a nonhomogeneous distribution of matter. It follows from this fact that the
mean matter density in the structuralized system can be a certain function of the
distance from the centre of the system. This function was found in an analytical
form for an expanding-like material with diffusion and gravitation.

I. INTRODUCTION

During the last few years problems of structure formation in physical systems with
diffusion and hydrodynamical flows were in the centre of interest of synergetics (a
good review can be found in {1]).
The starting point in these problems is the continuity equation in the form:
de
vVJ + |%|“ =40,
J=—DVp+ v

1)

where D is the diffusion coefficient, ¢ the mass density, » the “hydrodynamical”
velocity caused by physical fields, as for instance the expansion of the system. The
final form of the equation (1) can be written as:
de

i V(DVyp) — Vv ~ vVo. 2)
Special cases of the equation (2) are systems with O(3) or O(2) symmetry. The
growth of structures in such systems is studied in papers [2,3,4], with the difference
that instead of diffusion thermal flow and rotation were considered.

In most cases of structure formation problems with diffusion the characteristic
coefficient (the diffusion coefficient or in the case of heat conductivity the heat
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conductivity coefficient) is considered to be constant and practically in all cases
it is supposed that the exhibited structure starts from a homogeneous state. The
mean matter density in such systems is almost constant.

The systems observed in reality very often exhibit a nonuniform distribution
of mean density. For example, we can mention the grandiose structuralisation of
the structureless matter into galaxies and galaxies into stars. {5-9]. The measure-
ments show that galaxies, as for instance Galaxy, exhibit a distribution of matter
characterized with a decrease of the density from the centre to the periphery.

The nonhomogeneous distribution of matter in our Galaxy is most often ex-
plained as a result of the dynamics of stars [10]. It is possible to find a matter
distribution function by fitting the relation for the angular velocity distribution of
stars as a function of density. The starting model for this calculation is a model of
a gas described by Boltzmann’s equation, which cannot be expected as a totally
adequate model.

It is possible to imagine that the cosmic cloud is nonhomogeneous before the
fragmentation into stars [11]. Such a possibility follows naturally from the model
presented in paper [9]. This model respects the gravitation, the diffusion and the
expansion of the Universe and leads to the same results for the critical mass as
Jeans’ theory.

Under simplified assumptions used in [9] a structure with a homogeneous dis-
tribution of density was found, but it is possible to suppose that by solving the
fundamental equation of the evolution without simplification a nonhomogeneous
structure can be achieved. In this paper we will try to prove this.

The problem of structure formation is naturally actual not only in connection
with astrophysical problems. All the gaseous and liquid states of matter with a
micro- and macrodynamics can under certain circumstances exhibit a qualitative
transition characterized by a discrete distribution of matter. In the case of a O(3)
symmetry of the system such problems can be solved analytically. An example of
such a system are spherical systems, expanding in the direction of the radius vec-
tor from the centre. This system can be characterized by a homogeneous chaotic
microscopic motion or a macroscopic motion caused by radial symmetric forces
(gravitational, electric). To be able to apply our results also to astrophysical prob-
lems we will suppose a linear type of expansion of the system.

II. THEORY

Taking into account the above mentioned assumptions the “hydrodynamical”
velocity has two parts: the expansion part (v.) and the field part (vs). For the
linear type of expansion we can set:

ve=Hr,
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where H is a constant and in the case of gravitational field the field part is:
vy =vy, =T1E.

E is the intensity of the gravitational field and 7 the corresponding relaxation
constant. The intensity of the field satisfies the equation:

VE = —4n«p,

where « is the gravitational constant and g the density. Under these conditions
the equation (2) takes the form:

.WW = zﬂwqa — HrVo+ (A-3H)e. (3)

The parameters A and K are defined as:

2mem3/?

m
A="2" K= .
o(5kT)1/2 3%

Here m is the particle mass, ¢ the effective cross section of collisions, T' the tem-
perature and & the gravitational constant. The parameters A and H change their
values in general in time (e.g. in the case of the astrophysical structuralization H
decreases and A increases), but these changes are so small that we can solve the
equation (3) supposing A and H being constant. We suppose that the gas consists
of 2-atomic molecules, but it is not important for the calculation. We tock into
account the dependence of the diffusion constant on the density ¢ in the form:

m 1
D=—r—=K-.
3200 0
In the spherically symmetric case we introduce new scaling variables g = ggz
and r = roz, where gg and ro are the characteristic parameters. The equation (3)
can then be transformed into a dimensionless form:

8z Do 8 (z?02 QN

where

m
Dy = ——=—ou.
o 32000

This equation is a special case of a general differential equation having the form:

0z 0

=5 Amc z) v + Fy(2). (5)
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Concrete cases of the equation (5) are analysed in many papers (see e.g. {12-19)).
In some cases the solutions are spatially structuralized. The equation (4) was not
analysed mathematically, but it is evident that we can expect a bifurcation point
in its solutions. Monotonic solutions reaching this point change into solutions with
spatial structure. Trying to prove it we use the “ansatz” (“automodel” solution)

in the form
Q

N“Q»ANV.\.AMV. = Qva

Inserting (6) into the equation (4) we get the equation:

(6)

v R T TR g f
azr®y
- H— —=f + (A -3H)wy f, )

where the sign (°) is the derivative with respect to time and the sign (") with
respect to £. Using the relations:

a= -1,

h=-2Hy,  (y1 = exp(~2H1)),

v2=-Hy:  (v2 = exp(~H1)), (8)
the equation (7) can be transformed into the form:
+7!
e || +or=0 (©)
with
B=1% 2 H),

and after the substitution f(£) = @G?Am: the final form of the equation is:
§*u"(€) + Bexp[u(€)] = 0. (10)

The approximation of small deviations exp[u(f)] ~ 1 + u({€) gives a simplified
equation: ‘

gu"(€) + B(L+ u(€)) =0, (11)
with the analytical solutions (see e.g. [20]):

u(€) = {Crexp(\/IBI/E) + Q%il\ﬂ\of +u, A—H <0, (12a)
wf)=Cr +Co§ +up A-H =0, (12b)

u(€) = {Cr cos(V/IAI/E) + Cosin(VIBYE } e +w,  A— 1 >0, (12¢)
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where u, is a particular integral of (12). For further discussion it is important that
the function for A = H is an exact solution of the equation (10).

The functions (12) are one of the possible solutions of the equation (3). The
advantage of this solution is that it fulfiles our initial condition and that it de-
scribes very well the evolution of the system from states, when A < H through
the bifurcation point (A = H) to states, where A > H. This evolution in the
constallation of parameters A and H really took place in astrophysical systems.

The initial condition ¢ = go in time ¢ = 0 can be fulfilled by choosing the
constant C} = 0 in the function (12a). The singularity in the point » = 0 is of the
type exp(—r)/r and corresponds to the fact that the density of matter in radial-
symmetric bodies is not well definable for the point r = 0. (If a point like a particle,
e.g. the electron, is placed in the centre then g(r = 0) — 0o0.) Everywhere except
of the small neighbourhood of the point r = 0 in time ¢ = 0 there is u(¢) — 0 and
therefore f(€) — 1 and o = gg.

III. RESULTS

It is possible to interpret the solutions (12) in such a way that the system under-
goes a change from the state described by a monotonic function to the state with
a periodic spatial structure crossing the bifurcation point A = H. The possibility
of such a structuralization from the state corresponding to the condition A < H
into the state with A > H is discussed in [9].

The solution (12) shows a bifurcation point for A = H with the corresponding
exact solution. The matter density in the bifurcation point can be expressed by
the function (¢ = to): :

o(r) = po exp(—2Hto) exp(Cy + C; exp(Ht,)/r) = Aexp(B/r), (12)

where A and B are constants determined by the boundary conditions. This solu-
tion is singular for » = 0. Astrophysical systems overcome this singularity by the
formation of a central body (a black hole [10]?) characterized by a finite density.

The function (13) can be used for describing the distribution of the mass den-
sity in the time ¢ = {y, when the structuralisation started. One can suppose that
this distribution does not change substantially in the process of further struc-
turalization. This result shows that the structuralization of an expanding gaseous
system with diffusion and gravitation starts in general from a nonhomogeneous
distribution. This nonhomogeneous distribution can manifest itself in a nonhomo-
geneous distribution of matter in the system at later times. The measurements of
our Galaxy (see for instance [12, 21]) can be fitted well with a function of the type
(13). This fact can serve as an indication that at least partially the formation of
stars in it from the gaseous state started from a nonhomogeneous state.

214

IV. CONCLUSION

A model of a diffusion-hydrodynamical system with O(3) symmetry can be used
to explain the nonhomogeneous distribution of matter in different systems. This
effect could be mainly caused by the dependance of the diffusion coefficient on
the density of matter. An analytical function expressing the dependence of the
mass density on the distance from the centre of the expanding system was found.
A comparison with experimental values known for our Galaxy showed that the
nonhomogeneity of matter distribution could be in the first step generated in the
time before the structuralization.
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BU®YPKAIINA B N_,.S.vawSOmmO-HS.ﬁmvO\NSF»PKSQMOROW—
CHMCTEME C 0O(3) CUMMETPUEN

B pabore mokazano, 4ro 6udypranma B AU Y3MOHHO-TU AP O AMHAMUYECKHX
cucremax ¢ O(3) cummeTpueii HeHauMHaeTCa Kak NPHAHATO C OFHOPOIHOIO,
HO € HEOZAHOPOLHOI'O paclpeRe/leHNA MATEPUM, M3 HYero CIAeAyeT, 4TO CpeqHad
MACTHOCTL MATEPUN B CTPYKTYPHBIX CHCTEMAX MOXET OLITH HEKOTODOU yHK-
uMed pacCTOAHMA OT UeHTpa cucTembl. Takad dynxuma B paboTe BhIpaskeHa,

B aHaJuTH4Yeckoll dopMe Iuia skcnanmpyromeii MaTepuu ¢ mudysueit u rpa-
BUTaLMelk.
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