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ELASTIC COLLISION OF HARD
SPHERES IN THE SPACE

Staricek, L.1), Cvengros, J.1), Bratislava

The study deals with the problems of elastic collision of two hard spheres in space
providing that the spheres start from any arbitrary position in the space, either
simultaneously or non- simultaneously. Spatial and time conditions of collisions are
formulated and equations for the determination of the position of the spheres at the
moment of the collision, velocities and directions of motion after the collision are
derived. For the determination both analytical and graphical methods were used,
the last one employing the hodograph of velocities. The submitted method of the
hodographic analysis is relatively simple and illustrative. It can also be applied to
the problems otherwise solved by the use of the Boltzmann equation. The method
also enables to solve models involving multiple subsequent collisions. The derived
relationships can be applied to the solution of the problem of the mean free path of
molecules in ideal gas under anisotropic conditions.

I. INTRODUCTION

The paper submitted is the result of the study of a partial problem connected
with the molecular distillation. It concerns the determination of the dependence
of the rate of evaporation on the mean free path of the molecules in the space be-
tween the evaporator and the condenser [1). The hitherto achieved results [2,3] are
not quite satisfactory, because the anisotropical character of the mean free path
in them is considered by means of empiric constants. Better results are expected
when considering the mean values of all possible collisions in the space in question.
The essence of this solution is the collision of two solid spheres in vacuum which
also enables to program collisions among the already collided molecules. The result
is of a general physical validity. The known methods of the determination of the
free path based on the solution of the Boltzmann equation {4,5] provide a compre-
- hensive solution of the problem; however, they are complicated and demanding as
for their calculation.

II. BASIC MECHANICAL RELATIONS

Two hard spheres moving two given positions in space at given constant veloc-
ities in any direction can collide one with another only under certain conditions.
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This study is focused on the determination of the position of the sphere centres
on the collision axis at the moment of the collision and to determine the velocities
of both spheres after the collision.

Now, we shall suppose equal weights m and equal diameters d of both spheres.
At the beginning, a simultaneous start of both spheres will be assumed (7 = 0).
A non-simultaneous start can be transferred by proper spatial transformation to
the given special case.

At a collision of perfectly elastic spheres the laws of conversation are valid. If
the initial velocities of the spheres are v4(vaz, vy, va:) of vB(vBz, VBy, ¥B:), and
the velocities after the collision are v/ (v)y,, v}y, vy,) or vp(vp,, Vg, vlg,), the law
of conservation of momentum

muv, + muvg = mv', + mvg (1a)

and the law of conservation of energy

2 2 ‘2 /2
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3m+§w ==y +3m {1b)

are valid.

Equations (1a) and (1b) provide a system of four scalar linear equations for
six coordinates of the vectors v4 and vp, and therefore two other parameters are
required for the solution of the collision. One can prove [6] that (1a) and (1b)
remain valid if they are solved as follows:
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where vg = vg —v 4 is the relative velocity of the motion of both spheres and o, is
the unit vector of the collision axis 0. The vectors v/ and v} can be determined at
the given position of the collision axis o by quite a simple geometric construction
(Fig. 1), where u = (vg - 01)0;. It is evident from Fig. 1 that the components of
the velocities perpendicular to the collision axis do not change during the collision,
and the components parallel to the collision axis are exchanged. The point C in
the hodograph of the velocities is lying on the circle k circumscribed above the
vector of the relative velocity vg.

Vectors v, v and o need not be in one plane. Vectors v/, vy can always be
determined geometrically by means of the hodograph in Fig. 2, where the vectors
v4, vp and o are plotted from an optional point S. Point Vj4 is the terminal point
of the vector v4 and point Vp is the terminal point of the vectors vp and vr.
The sphere k constructed above the diameter vg crosses the parallel line with the
collision axis oy in the points V4,Ca and Vg, Cg, respectively. The line segments
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Fig. 1. Collision of two spheres on the collision axis.a) in space; b) hodograph of velocities.

Fig. 2. Hodograph of the velocities at collision in the space.

V4Ca and VgCy form a right. angle in the point C 4, because it is the angle mvﬁ.z.o
the circle diameter on the sphere k. The connecting line V4Cy determines the line
segment u = (VR - 01)01 @ therefore — according to (2a) — the vector defined by
the connection line SC4 equals the required vector vj. .

When applying the previous consideration to the point Vg and the mx.v:; nwm
intersection Cp with the sphere, it is possible to determine the final velocity vp
as a line SC 5, as well as the relative velocity of both spheres after n.o_zm._ou.e\m =
vl — v, which is illustrated by the line Qm0.>.. Thus, the geometric solution of
the problem is given if we know the collision axis.
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Fig. 3. Input data and the angles £ 4 and ¢p.

The determination of the direction of the collision axis and the positions of
the vectors of velocities v}, and vy in the space requires analytical solution of the
problem of collision by means of spatial representation whose determining elements
are presented in Fig. 3. Let the centre of the sphere A at the start be given in the
orthogonal system of coordinates by the coordinates of the point Alza,ya,24),
and the centre of the sphere B by the point B(xp,yg, zp). Let the initial distance
between the spheres A and B be a = AB. The coordinates system is chosen so
that the zy plane is fixed to the given experimental equipment — the beginning
of the coordinate system is in the point A and the point B is on the axis z. Then,
Ta =Ya =z4 =0and zg = a, yg = 2z = 0. Let the directions of velocities be
given by the angles ¢4, ¢g, which are formed by projections of the velocities vy4,
vp into the plane zy, and angles £, £5, which are formed by these velocities with
the plane zy. Let the angles formed by the velocities with the axis = be XA; XB
whereas cos x4 = cosp4 cosé, and cos XB = cospp cos€p. The carrying line of
the vector v, is na(pa,€a) and the carrying line of the vector vy is np(ys,&8).

III. SPATIAL CONDITION OF COLLISION

Since the lines n4 and ng are, in general, oblique lines, only such input data
can be considered for which the shortest distance d, of both skew lines is smaller
than the diameter of the spheres d. Calculation of the shortest distance of these
skew lines for our conditions will be performed in accordance with Fig. 4. If the
connecting line of the points Ay, B, on the straight lines ny and ng determines
the shortest distance of both skew lines, then — based on the definition of the
shortest connection line — the angles at the apexes A, and B, of the triangles
AAoB, and BB, A, are rectangular, which results in the following relationships:

dg = b3 —ch = bh — cj, ®)
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Fig. 4. The shortest connection dy of the carrying lines n4 and ng.

where d, = Ay By, by = \»mo:P» = AAo, bp = BA, and cg = BB,.
By means of the triangles ABA, and ABB, we can get the following:

aw + nw — 2c4cp cos ¥ — 2a(ca cos xa — cp cos xB)+ a® — &w =0, (4)

where
cosd =sinasinép + cos€4 cosEp cos(pp — pa) (5)
and ¥ is the angle of the vectors v4 and vg in the hodograph of velocities. For

the shortest connection line d, one gets

a ;
&w = I.JIAm:_u # = :wmv (6)
sin”
irm_,o n%p = cos? x4 + cos®xpg — 2cos X4 cos x g cos ¥. The spatial condition for
collision is
d, < d. (M
The data which do not satisfy the condition {7) exclude the possibility of a collision.
In the case of a planar collision when the vectors v4 and vp are in one plane, and
d, = 0, the condition (7) is always satisfied, however, collision does not necessarily
need to take place if also the time condition of the collision is not satisfied.

1V. TIME CONDITION OF COLLISION

If the sphere A moves at the velocity v4 and the sphere B at the velocity vg,
and both spheres meet at the time 7 from their start, then the first sphere passed
the path /4 and the second one the path Ig, whereas

o =var lg =vgr. (8a,b)
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For the calculation of the paths {4 and Ig Fig. 4 can be taken into consideration
in which the quantities c4, cp and d, are substituted by the quantities I4, I and
d, and the conditions of perpendicularity given by (3) will not be required. In
accordance with (4) and (5) the following equation will be valid:

A +14 —~ 24l cos ¥ — 2a(lgcosxa —lgcosxp)+a®>—d?> =0 9)

where d is given. When substituting the corresponding values from (8a,b) into 9)
a quadratic equation for 7 will be obtained whose root with physical significance

has a shape as follows:
¢ 2 2,2
T= 3\ TVR: —\[VR, — D?vg . (10)

VR
Here the following symbols have been introduced: D? = (a® ~ d?)/a®
vk

VR = UACOSXA — UBCOS YR

v + v} — 2v40p cos ¥

and where vg = vp—v, is relative velocity, and vg, is the coordinate of the vector
vR projection into the z axis and the angle ¥ is the angle of vectors, introduced
in Eq.(5). The period of collision depends only on the relative velocity. The time
condition of collision requires that the time 7 is a real quantity, and therefore it
must be valid that

vk, — D*ug 2 0. (11)

This condition of inequality limits a certain interval of permitted values for v 4
and vp and also a certain time interval. We also allow for non-central collisions.
In the extreme case if the spheres just touch without any collision, the equality
is valid in (11), which gives for the ratio of the values of vectors p = vg/ua the
equation

p*sin’® yp — 2p(cos x4 cos xp — cos¥) +sin® x4 = 0. (12)

The roots of (12), pmax and pmin determine the maximum and minimum ratio
vp/va at which the spheres just touch without collision. Thus, for any given ve-
locity v, the interval of the allowed values of the <o_005am between vpgmax and
VB min at which a collision can take place, is determined. To these velocities, proper
times of the collision, 7ax and Tmin, correspond. The collision can take place only
if 7 is, according to (8a,b), within the limits

a Awmulnv <T<a Aewunv (13)
YR / min YR / max
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For 7 calculated from (10) it is possible to determine the paths {4 and I from
(8a,b), and from them also the coordinates of the positions of the spheres A and
B at a collision given by points A, and B,.

Zao =lacos€ycospy zpo = a+lgcosfp cos g
Yao = lacos€asinpy ypo = g cospsinpp
ZA0 “ﬁ»&:mb NNOHwamzmm AHAV

V. DETERMINATION OF THE COLLISION AXIS

The collision axis o passes the points Ao, B, with coordinates in accordance
with (14) (Fig. 5). Its position in our coordination system can be determined by

Fig. 5. Position of the collision axis.

the position of its point of intersection P(p.,py) by the plane zy, by the angle ¢,
which is formed with the plane zy and by the angle w formed by its projection 0p
with the axis z. The projection o, intersects the z-axis in the point O. A, is the
projection of the point A, and Bp is the projection of the point B,. Let 0 = PB,,
0p = PBy,p=ApBp, wqg = ApAo = lasiné, and wg = B, B, = Igsin{p.
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Then,

0, =d o ) op=p b :.mv

wp — Wy wp — wy
%mH&NIASmIS\CNH%IQmmEMw —dasinéy). (16)

From that

; 1 . . .
sing = MQmm_amml~>m.=m>v (17a)
nOmﬂ\\Hm (17b)

. 1 ; . ’
sinw = m?m cosépsinpp — 4 cos€ssinpy) (18a)
cosw = w?l? cosxa — Ip cos xp). (18b)
p

For a unit vector o; of the collision axis in the vector form the following relationship
is valid
01 = cos ¢ coswi + cos P sinwj + sin pk. (18¢)

By substituting into (2a) and (2b) it is possible to determine v’y and v5. A detailed
analysis of the results obtained in such a way is based on the collision hodograph

(Fig. 2).

VI. HODOGRAPHIC ANALYSIS

The analytical analysis is performed by putting the hodograph in Fig. 2 into
the coordinate system zyz used in Fig. 3, whereas the directions of the velocities
remain, and the point S is chosen on the z-axis. The situation is evident from
Fig. 6, where the collision axis op crosses the point Vg. A relative velocity vector
YR = URst + YRyJ + R,k has the form

vr =(vp cos pp —vacosp,)i+ (vpsinpg — v, sin wa)j+
+ (vBsin€p — vasinéy)k (19)
or
VR = vR(cos p; cOs pyi + cos p, sin p,j + sin p, k), (20)

where the angles p, and p, are shown in Fig. 7, and using (18¢) and (20) the scalar
product in (2a,b) can be expressed.

For the determination of the vectors v/, and vy by means of a hodograph
the angle 7 formed by the relative velocity vg with the collision axis o must be
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Fig. 6. Coordinate system of the hodograph.

known. This angle can be determined graphically from Fig. 7, where the ::#
length | = SE, the line segment J is perpendicular to .S, the ::w segment IL is
perpendicular to SL and EI is perpendicular to SI. Then, EI =sing, SI = cos,
EK =siny, SK = cost,IL = cosysinp,; SL = cosncosp;, § = w — pp. Then,
from the triangles SKL and E1J one gets

cos 1} = sin ¥ sin p, + cos 3 cos p, cos(w — pp). (21)

The position Cp (Fig. 6) is determined from the condition that the triangle
V4Cp Vg has a right angle at the apex Cp and Vp is on the op axis. If A = <m.0.m.
then h = vgcos7. Simultaneously, h, = hsint and h, = hcosy. If projections
of the vectors v/, and v}y are marked m:&omm.om:.w nrmAnrOmm of nrw vectors va m:&
vp, then — according to Fig. 6 — the following is valid for the triangle SCpCpp:

vy, = vp, + h, = vpsin{p + vrsiny cos7; (22)

201



X
Fig. 7. Angle of the collision axis o with the relative velocity vR.
y %
X
Fig. 8. Plan of the hodograph.
and in the triangle § Vo VBp according to Fig. 8:
.c\w —_ .2 bw
Bp = Vpp + hy — 2up,hy cos(180 ~ pp + w) (23)

202

and therefore

c% = vp + vj cos’ 7 + 2vupuglsin £p sin ¥ cos p+
+ cos£p cos P cos ncos(w — pp)]. (24)

The square root of this expression determines vf. In a similar way also v’y can be
determined. Then, h = V,C4,

V4, =va, —h, =vasinég — vgsinycosn (25)

and from triangle SV, V,, (Fig. 8)

.cufgw = .cw»v + }W - Mc\»ﬁvﬁ OOmAE = ﬁ\—v Awmv

and thus

t . .
vE = v} +v%cos? ) — 2v4vp[siné, sin ¢ cos -+

+ cos& 4 cos 9 cos ncos{w — p4)]. 27)
From (24) and (27) v/, and v}z can be determined using the given parameters and

the calculated axis of collision.
For angles of the vectors v}, and v}; with the plane zy the following relationships

are vahd:
G\m .c\
cosfp = = sinfp = 2= (28)
Vg Vp
! /
v p v
cosfy = \wu sing) = -4z (29)
Vg Va

where expressions from (22) through (27) are substituted for the corresponding
vector functions.

Calculation of the angles formed by the projections of the vectors vy and vp
with the z-axis are determined from Fig. 8, which is a projection of the hodograph
in Fig. 6. If op = OpVpp, and 04 = O4Vyp, then op : vgp = sin(180 — ¢p) :sinw
and (o + hy) : v, = sin(180 — @) : sinw from which

. 1 . .
sin oy = e\[?mu sin pp + vg cos ¥ sinw cos 1) (30a)
Bp
and i
sin gy = = (vapsingpq — vgcosPsinw cos n) (30b)
Ap
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and thus the directions of vectors v/ v in the coordinate system zyz are deter-
mined.

The solution of the problem of elastic collision of two spheres given by (2a) and
(2b) required first to determine the spatial condition of collision in (7), followed
by the determination of the time of collision which is in the case of a simultaneous
start of both spheres given by (10). The paths I, and g according to (8ab) were
determined, as well as the position of the spheres at the instant of collision in
agreement with (14). During the calculation the direction of the axis of collision was
determined in (17ab) and (18ab). The velocities of the spheres after the collision
starting from points A, and B, are given by (24) and (27) and their directions by
(28) and (30ab).

The data obtained allow to calculate secondary collisions, i.e. collisions between
already collided spheres provided that they are transformed into the coordinate
system according to Fig. 3, after arrangement to the simultaneous start.

VII. NON-SIMULTANEOUS START

In case of secondary collisions of two spheres M and N these either need do
not start simultaneously, or from the zy plane. Let the sphere M (Fig. 9) start

Fig. 9. Non-simultaneous start.

from the point M,(zy, YM,2p) at the time 7, with velocity var, and the sphere
N from the point N(zn,yn, zy) at the time 7y with velocity vy at a distance
an = MyN. Let 7, > 7. The sphere N will pass a path Iy = vy (7, ~ 7 ), within
the time interval 7, — 7x and will reach the point No(zo, yo, 2,), and thus we can
consider a simultaneous start of both spheres M and N from the points M, and N,
on their connecting line n, at a distance a, = My N, with original velocities vy
and vy . Introducing the proper orthogonal transformation which transforms the
given coordinate system zyz into a new one z*y*z* in which the z* axis would be
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on the line n,, the calculation of a simultaneous start can be applied to the case
solved in the previous chapters.

The presented transformation is carried out around the point M, at two stages:

a) by turning the zyz coordinate system around the z axis passing nrw.o:mr the
point M, by the angle ¢, formed by the projection n,, = z” with the axis H...Hrm
y axis will thus turn in the zy plane by an equivalent angle ¢, into a new axis y"
and the axis z = 2" remains unchanged;

b) by turning the coordinate system z”y"2"” around the y’ = y* axis gw the
angle £ which is formed by n, with its projection n,, one gets the final coordinate
system z*y*z*.

Parameters of these transformations are derived from Fig. 9

: In

sin @, = — cos €N COs PN
ax
L Iy .

siné, = — = —sinéyn.
a; ag

The velocity directions are additively changed with these transformations. Usu-
ally it is necessary to transform the calculated collision parameters (position, ve-
locity after collision) back into the original coordinate system zyz so that they
can be used for further secondary, tertiary, etc. collisions.

For properly chosen models of a great number of starting molecules (for exam-
ple, from the evaporating area) mean values of the distance of molecules (la,1B)
between two subsequent collisions can be calculated using the above presented
method, and to approximate the calculation of the mean free path in ideal gas
under anisotropic conditions.

VIII. EXAMPLE: BACK-REBOUND
ON A SERIES OF MOLECULES

As an illustration let us take a probable portion of molecules issuing from the
point source on the evaporation surface with a constant velocity with direction
distribution in agreement with the cosine law, which move back towards the evap-
oration surface after the first, collision. ,

Let us consider molecules B,, with a diameter d at the distance ! from the surface
of evaporation, which are equidistantly located by the length a on the right side of
the axis z (Fig. 10). Providing that the molecules start from the point A(0;0) at
a constant rate with a distribution of direction according to the cosine law, only
that part of released molecules will be back-rebounded which collides with the
molecule B; in the bow B;; Biy. If the evaporated molecule moves in the direction
providing an angle £ with the axis 2z, then — in agreement with the cosine law —
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Fig. 10. Back-rebound from a series of molecules.

the propability of leaving the molecule in the angle d¢ is as follows:
dP = WoOm £dé€.

Then, the probability of impact on the bow B;1(&:1)Biz(&ia) is

§ia
1 1
B, = M\Qummam = mﬁmm:mmu —sin ;).
€a
In agreement with Fig. 10 the following relationships are valid for sin &g orsiné;y
. ia . ia
sin&;z = M,. sin§;; = N

si = v/i2a2 + (1 - d)? L= vVita? 4 2.

At a sufficiently large angle & not a single molecule can pass between the
.Eo_moc_om Bi and Bg4; and all of them will rebound back. This will be in the case
if k = (I—d)/d, where k does not depend on a. If k is not an integer it is necessary
to consider the nearest integer m for the value of k. In the example illustrated in
m;mm. 107 =m.

It results for the probability of the back-rebound of the molecules A from the
series of the molecules B, that

where

w

poaNS(i i\, 1 .
=3 5 y -+ m\.SmmE Em =
£

i=m 5 r 1 .
= m AP — Hv + MC —sinéy,).

st
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For sin &, the following relationship can be derived
(m+ 1)a
Vim+ 1) + 12

If the unit diameter of the molecules is d = 1, then m =1 -1 and

siny, =

. a
sinéy = ———,
33 T
and thus the angle & does not depend on [. There will never be any back-rebound
from the molecule B, in the case of the coordinate z = 0, z = L.
The probability values P in dependence on the coordinate z of the series of the
molecules B, are shown in Fig. 11 for different distances a between the molecules.
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Fig. 11. The probability P dependence of the rebound on the coordinate z of the series of

o
n
w

a=10

T

molecules for different distances a for d = 1.

It is evident from Fig. 11 that for z larger than 20 d and for a larger than 50
the probability of the back-rebound is smaller than 5 promile.

The nmﬂmiozmr:vm presented in the paper enable probability calculations for the
back-rebound even after multiple collisions.
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IX. CONCLUSION

Molecular distillation is connected with the idea that the molecules of the dis-
tilled substance are passing undisturbed the distillation space between evaporator
and condenser with a minimum of collisions. Frequently emphasized in this connec-
tion is the condition that the mean free path of molecules of the distilled substance
must be larger than, or a comparable with, the width of the distillation gap. For
the mean free path X the classic relationship is being presented that has been
derived from the kinetic theory of gases

1 kT

V2nd?n V2rd?p
where n is the number of particles within the volume unit. If values typical of
molecular distillation are substituted in relation (31) (M =200 g-mol~! p=1Pa,
d = 9x 10-%m, T = 400 K), the obtained X values is approximately 1 mm.
Here a discrepancy arises from practical experience because even at a condenser-
evaporator distance of up to 50 mm in large production molecular -evaporators no
significant drop of the distillation rate versus theoretical values is observed.

In molecular distillation the mean free path of distilled molecules obviously
plays a significant role and affects the process; its effective value, ros,mﬁw? is to be
determined for this case from other relations. Equation (31) has been derived for
nondirectional chaotic molecular motion with an equal probability of all directions.
Conditions in the distillation space in molecular distillation, however, are different.
The molecules of the evaporated substance are departing from the evaporation
surface with a preference of directions according to the cosine law, whereby most
of the molecules depart in a direction perpendicular to the evaporating surface.
It follows, for example, from the cosine law that 50% of evaporated molecules
from the point source on the evaporation surface depart in a space angle around
the normal that represents less than 30% out of the whole semi-space above the
evaporation surface. Thus what Prevails here is the directional motion of particles
in the direction from the evaporator toward the condenser and relation (31) loses
its justification.

At the directional motion of molecules in the distillation space their free path is
prolonged because of the reduced relative speed of particles versus each other and
the proportion of molecules emitted from the evaporator under large angles from
the normal is small. Few are also the particles which, after collision, take the course
back to the evaporation surface. If collisions occur at the motion of molecules with
a preference of directions, these collisions need not have a fatal consequence for the
process. What will probably prevail are collisions among molecules flying roughly
in the same directions, faster molecules catch up with the slower ones and particles
will retain the preferred direction of motion also after collision. Deflections from

>|

(1)
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directions of the greatest probability will thus be relatively small, at least after

the first collisions. . .

The relationships derived in the present paper allow to m:m_%mw the m;._wnMMs
at the collision of molecules as flexible spheres and to draw nown_:m_ozm about ! e
distribution of directions, frequency of collisions and the effective free path under

conditions of directed substance transport.
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POB
OE PACCESsIHME TBEPIBIX IITA
YHEYE B ITIPOCTPAHCTBE

O -
B pabote uccaenoBaHbl BONPOCH CBA3aHHBIE C YIIPYTHM vwnommﬂﬁ%%w ww-
AbIX IIAPOB B MPOCTPAHCTBe, IAe MIaphl CTAPTYIOT OAHOBPEMEHHO, 1 B pas-
Hoe BpeMs ¢ io60# Toukm npocrpaHcTBa. I[IpocTpaHCcTBEHHEIE, :.:xz_svxoow-
HbI€ YCJIOBMA COYHAPEHMA BbIpa)keHbl ypPaBHEHMAMM onvohohao:w i1 00D
AVHATEI COyAapeHUA, CKOPOCTh B :w:vww:m:ma hwsimmswvﬂwo%ﬁwmm xww mv ov_sm
HAJUTUYECKOR U Taroxe
Briuncnenue npopoaMIcA B a v opie
C npuMeHeHMeM ronorpaduyeckux crkopocteit. IIpennoxenniit Zmﬂob:oﬂ -
BaeTCA MPOCTLIM M NOKd3aTeNbHBIM. MoxkeT BBITH TarKe WﬂﬂMMMMM Wm  pe
UCTIONb3YETCA ypaBHEHHE :
HUM Apyrux mnpobiem, rae Megon
mh%uwoumowwvoEwav npo6aeMy MHOTOKPATHEBIX OCHAEAYIOLIMX no%MM.MMWWo oo
HEro CBO -
€HMMb! B BEIUMCIIEHHMM Cpes
JlydeHble ypPaBHEHWUA IPUM .
oWommsm MOJIEKYJI MAeaJbHOrO Ir'a3a B YCJIOBUAX aHM30TPONMU
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