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AN ANALYSIS TECHNIQUE FOR THE
WAVEGUIDE ON THE SAW CONVOLVERSY

UCER, M. K.2), AKCAKAYA, E.?), Istanbul

By using the scalar potential theory, dispersion relations for all the modes in the

waveguide on the YZ-LiNbO; are obtained. In this analysis, wave-numbers of the

. fast and slow regions are obtained by using a proper curve fitting technique for the

“-data of the Rayleigh wave velocities of electroded and unelectroded YZ-LiNbOj.

Dispersion relations obtained by the presented technique are compared with the
experimental results.

L. INTRODUCTION

The applications of the surface acoustic waves are used in the signal processing
systems and radar applications. The convolvers and correlators are among these
applications. Especially correlators and convolvers give a new interpretation to
acoustic signal processing. In acoustic convolvers or correlators the interactions
of the acoustic surface waves are used to perform a convolution or a correlation
of two different input signals. The interaction of two waves is performed in the
waveguide part of the device. .

The problem of the waveguide on the convolver designed with the focused in-
terdigital transducer has been discussed. To obtain the guided propagation of the -
SAW in a specified direction, various techniques have been used. It has been men-
tioned that there are four different waveguide structures for SAW devices. First
the overlay (plane) waveguides in which a thin film strip is placed on a substrate,
secondly the topographic waveguides, which consist of a Jocal deformation of the
substrate surface itself, thirdly those in which a local change has been produced
by the properties of the substrate material, and fourthly circular waveguides [1].
These waveguide structures are shown in the Fig. 1.1. In the SAW convolvers, the
plane waveguide structure is usually used. The wave Propagation at the waveguide
is investigated by the scalar potential theory developed for this structure. The
scalar potential theory has been introduced for the isotropic structure [2]. To take
the anisotropy effect of the crystal into account, this theory has been modified by
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considering that the wave velocity depends on the propagation direction as a par-
abolic function of the Propagation angle [3]. In this work, using wave velocities of
the mcvmﬁmnn material rather than the parabolic curve fitting, dispersion relations
for all wave modes are obtained and computer simulations are performed.

2. PLANE WAVEGUIDES

.H.ronm are two basic plane waveguides. These structures are slot and strip wave-
guides as shown in Fig. (1.1.a) and Fig. (1.1.b). The device in this work has the

in this region is smaller than the wave length of the SAW. In the analysis of the
SAW guide the scalar potential theory described by Knowless [2] is the starting
point. Knowless has shown that the propagation of SAW has been investigated by
a unique scalar potentjal function on a semi-infinite isotropic medijum. Knowless’
scalar wave equation is of the form:

v P 2
ey + F e'n_v =0, .AM.C

‘where v is the surface wave velocity, w is the radian frequency, z and z are coordi-
hates of the surface plane. Waveguides have been modelled, as shown in Fig. (2.1),
for both the slot and the strip waveguide structures. It has been believed that
the waveguides consist of three different regions. In these regions V, ‘and V; are
the wave velocities of the central region and the side regions, respectively. In the
central region, the wave velocity is slower than that of the neighbour regions.

Fig. 1.1(a), (b) Plane Waveguides; (¢), (d) Topographic Waveguides;

(e) Third type Waveguide; (f) Fourth type Waveguide.
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Fig. 2.1. The chosen coordinates system.

The wave propagation at the slow and the fast regions are investigated by ¥,
and ¥y, the scalar potentials, which are described for each region respectively. In
these regions the wave equations are as follows:

8w, 9w, 2 a a

a2 T gz =0 —5<a<y

%n_s_. %n_ﬁs w? a. AM.MV
ozt ¥ a2 Y gl =0 2>3

To obtain the dispersion relation, the wave equations are solved by using the
boundary conditions given for the scalar potential. Under the boundary condi-
tions at z = +¢ the displacements and normal components of stress are contin-
uous at discontinuity. Similar boundary conditions may be constructed from the
scalar potential. In the isotropic homogeneous case the Knowless scalar potential
is proportional to the surface normal component of displacement. Therefore the
boundary conditions can be taken as follows:

U, =0 z= wm (2.3)
and .
ov, . ow,
Ciga =Cr 5% (2.4)

at z = 2, where C, and Cy are effective stiffeness constants for the slow and the
fast regions respectively. In guides having a low dispersion, two regions have almost
the same velocities and effective stiffeness constants of both. Thus the boundary
condition (2.4) becomes

ow, o,
B = o @5)

at = +3. The scalar potential solution of the wave equation may be obtained as
follows: .

a a
Aexp Alwns mw = Bcos(k,, 3 (2.6)

kr, Aexp Albnamv = Bk,, mmz?a.m ] (2.7)
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By applying the boundary conditions the following dispersion relations for sym.

metric modes are obtained

a *uu..
tgks, o) = =L
NA Ty N ”H- ’
where k., and ks, are the transverse decay constants in the form:
w
ky, = —
T, S
: w
kﬁs = q\
For inverse symetric modes we have
k
ﬁOﬂm A”Hu mv = h’.
ks,

2.8)

@oy

‘

@.5@

.Hro dispersion relations may be modified to include crystal anisotropy. In the
E.:monao_umn waveguide, the wave velocity depends on the angle © which is measured
with respect to the waveguide axis. For this © dependence, there are different
approaches in literature [2], [3]. The transverse decay constants have been given

as follows;

ak,, u%%; Yofia ~

d Vor(6y)
Qmuu = w\\mh _ i
) ) T\e.ﬁm.v = D.maQ\aL (Ba)?,

(2.11) .

(212)

where £ is equal to /Vp, the waveguide phase velocity V,, the system parameter

t/a and A, is the mass loading effect.

‘3. THE DISPERSION CURVES

,.Hro dispersion curves have been obtained from the equations
USIng a computer program. The dispersion curve is the function

(2.8)-(2.12) by
of the variable.

Ba. In the o.m_nc_waoum the parameter t/a has been taken as 0.002 for the LiNbO3 -
substrate with the thin film 180 nm. The mass loading effect value A, =1164 has®

fitting technique for the data of the Rayleigh wave velocities of YZ-LiNbQs, are:

Vos = A0 + Al cos 20, + A2c0s46, + A3 cos 66,
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Fig. 3.2. The dispersion curves for the eq.

Fig. 3.1. In the isotropic case the
(3.1) - (3.4).

main mode dispersion curve.

and

Vor = A10 + All cosh 26, + A12cosh 46, + A13 cosh 69, 3.2)

where the function coefficients are:

Al = 0.04095614
A3 = —0.01490759

A0 = 0.9737648

A2 = ~0.0010427 @3)

and
Al0 = 0.983396 All =0.0352977

Al2 = —0.0017487 - A13 = —0.0167613 (34)
The dispersion curves which are obtained by using the velocity relations in equa-

tions (3.1) and (3.2), are shown in Fig. (3.2). Next the dispersion curves related to
the above velocity relation and the velocity relation in Ref. [3] have been drawn.

These curves and the experimental results are shown in Fig. (3.3).

4. DISCUSSION

‘As it is shown in Fig. (3.3) the theory of the scalar potential gives good results
in the investigation of the waveguide problem compared with the fittings of the
velocity approaches to the experimental results. It can be seen that the approach
given in this work is better than other approaches.
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Fig. 3.3.(a) The relative velocity curve for the approach given in this work; (b) The
relative velocity curve for the velocity function in the ref. (3]; (¢) Dots are the -
o experimental results.
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TEXHUKA AHAJIM3A BOJIHOBOJIOB
C ﬂﬁsgmmﬂmmswg KOHBOJIBBEPOB IIAB.

C npumenenuem CKaJIapHOM MoTeHIMalbLHOK TeOpMM IMOJLy4eHHH! Ana YZ-
LiNbO3 mmucnepcuoHHBIE YyTpaBHeHUA A BCeX MOX B BosHOBogax. M3 ana-
/32 JAHHEIX BOJHOBKIX CKOPOCTelt Pefinu B aekTpomHoM 1 6e301eKTpoxHoM
YZ-LiNbO3, ¢ NpUMEeHEeHNEeM MaTeMaTHYecKoil TOArOHKH, NOJY4YeHK! BOJIHOBLIE
qMcia GuICTpolt M Meniennolf .o6nactelt. Taxum o6pa3oM monydeHHEIe JUC-
NIEPCHOHHBIE yIIPABJIEHNA CPaBHUBAIOTCA C 9KCNEPUMEHTAIbHBIMMA JaHHLIMM.




