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THE EFFECT OF INHOMOGENEITY ON
DIRECT CORRELATION FUNCTIONS OF A
ONE-DIMENSIONAL LATTICE GAS WITH

MANY-NEIGHBOUR INTERACTIONS

SAMAJ, L.1), MARKOS, P.1), BRATISLAVA

The aim of this paper is to investigate the effect of a varying field on the direct
correlation function (DCF) of spin chains. The problem is studied via a lattice
gas with three-neighbour interactions chosen so that the long-range DCF can be
obtained explicitly. The numerical calculations indicate a more rapid decay of the
DCF with increasing the dispersion of the applied field. This fact permits to apply
the general concept of the DCF also to inhomogeneous systems.

1. INTRODUCTION

The character of the real physical world requires to extend the general aspects
of homogeneous systems to their inhomogeneous counterparts.

The degree of locality or non-locality of the free energy for Ising lattices is
reflected through the range of direct correlation functions (DCF) within the inverse
formulation of the profile problem (for a review see [1]). The analysis of the Ising
chain with nearest-neighbour interactions shows the strictly finite range of DCF
for a uniform as well as non-uniform external field [2]. According to refs. [3, 4] this
fact can be explained by a special topology of the chain having articulation points,
which plays a fundamental role for the case of a uniform as well as a varying field.

On the other hand, higher interactions induce long-range DCF in the presence
of a uniform field [5]. The question naturally arises as to whether the dispersion
of an external field influences the decay of the DCF. This question acquires a
great significance. Namely the DCF of a homogeneous model decays, in general,
more rapidly than its reciprocal, the spin-spin correlation function. This fact is
the basis of many approximation methods in equilibrium statistical mechanics of
various homogeneous models. The investigation of the above question then allows
to conclude whether the concept of the DCF remains valid also for inhomogeneous
models.

In this paper, we study the proposed problem via a simple one-dimensional
lattice gas with three-neighbour interactions chosen in such a way that the DCF
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can be obtained explicitly using a recently developed method for solving the inverse
problem {3]. Our main conclusion is that the dispersion of an external field implies
a more rapid exponential decay of the DCF.

The inverse problem of the one-dimensional lattice gas with three-neighbour
interactions is solved in Sec. 2. The numerical results are given in Sec. 3. The
concluding remarks are presented in Sec. 4.

2. INVERSE PROBLEM FOR A
ONE-DIMENSIONAL LATTICE GAS

Let us consider a lattice gas version of the Ising chain with constant three-
neighbour (dimensionless) interactions J in a varying (dimensionless) field
{Hn}_; acting on “spins” 5n = 0,1 localized at sites n = 1,2,...,N (N — o0).
Its Hamiltonian H is defined by

N-2 N
—BH = M .N.w:m=+~m=+u + MU N&«.Am: - C AC
n=1 n=1

with 3 being the inverse temperature.
The equilibrium thermodynamics of the proposed model can be deduced from
the statistical sum
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n=1
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where 1,7 =1,..., N and the summation proceeds over all the possible configura-
tions of N spins. Qur major interest will be in the DCF cij which is the reciprocal
of the spin-spin correlation function,

i =97, (5a)

9ii = (sisj) — (s} (s5) . (5b)
In the inverse formulation of the profile problem [1] the (s;) are chosen as the
independent controlling variables. Having the external field needed to produce a
given magnetization profile the DCF can be computed in a straightforward way

%m..v Au % Amvv . (6)

In order to solve the inverse problem we will use the method presented in ref. [3].
As a first step, we will express the partition function of the considered model in
terms of nonlinear recurrence relations. With this aim we eliminate consecutively
spins from the chain and Investigate judiciously chosen statistical quantities of the
remaining fragments. Let us start with the spin at site 1. Using the identity

Cij =

exp(Js1sas3) = 1 +js1s983 with j= exp(J) -1 (")
for 51,582,583 = 0,1 and taking in (2) the sum over 51 we easily arrive at
ZN(J; Hy, o Hy) = [y +37(8253),] Zn-1(J; Ho, ..., Hyy), (8a)

where h; = l+exp(—H1), Zn_1(J; Hy, . .., Hp) is the partition function of N — 1
spins at sites 2,3,..., N and ('), denotes the ensemble average in the absence of
spin at site 1. Analogously,

SuJ;Hy, .. Hy) =143 (5283),1 Zn_1(J; H,, .. - HE), (8b)
.wum.ﬁmr_ o Hy) =1[hy (s2); +J (s283),] ZIN-1(J; Ho, ..., Hy), (8¢)
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and so
(81) = }N H.“.AMMMMVVM‘ (9a)
A.wwv = \: A.ww.vw +.u Amumwvw , HGVV

\: +3 Auumwvm
(s2); + j (s253),

= . : 9
.‘ (5152) By + 7 (s253), (9¢)
It is easy to show that (1), {s2), (s152) are related by
1= (s2) = hi({s1) — (s5152)). (10)
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Proceeding in this manner for spins 2,3,..., N we get

N-2
NZA.NW N&T ey NNZV = : Qwa +.N.A.w:+~.w:+wv:vx~\<|~\:<. A..—Hv

n=1

where the recursion variables (Sn+15n42),, satisfy, together with (sn41), (snt2),.,
the recurrence relations "
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hn =1+ exp(~H,) and the elimination of the n-th spin in (), means the simul-
taneous elimination of al] spins with indices lower than n. Eq. (10) now reads

1= (snt2)y = hnga((Sns1), — (Sn+15n42),)- (13)

The analogous elimination of spins starting from site NV, ending at site 1, gives

N
IN(TiHyy o HN) = T (ha + 5 (5n-180—2)" )hohs; (14)
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1- Ahalwvw = }‘:IuﬁAmaluvM -+ Ahal.—halwv“v‘ Aumv

Here, the elimination of the nth spin in ( )" means the simultaneous elimination
of all spins with indices higher than n.

The procedure for solving the inverse problem is now straightforward. To express
a specific field, say H;, as a function of the magnetization profile we will eliminate
the ith spin from the system and investigate the consequent modification of na-
turally chosen quantities Zn(J; Hy, ..., Hn), Si(J; Hy, ..., Hy), Siq1(J; Hy, ...,
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M&Zv_ .m...+NA.~mmu_..._m2v. .Wmlmﬂ&wmu,..._mzv_ m...IMA.NwNNT..szv. Using the
identity (7) we are able to express each of the five magnetizations {s;_s), (si—;),
(8i), (si41), (si4+2) in terms of the field acting on site i, H;, and correlations of
the four spins s;_,, $i-1, Si, Sit+1, Si+2 in the absence of the ith spin. How-
ever, spins siyp, Siyz are statistically independent of spins Si—1, Si_7 in the ab-
sence of the ith spin, so we may decouple many of the above correlations, e.g.
(si-18i41); = (8i-1)] - (si41)i, (sim28im18i42); = (siasic)], (siga);, etc. As a
result, it is sufficient to consider only six unknows (sit1)i (Siga);, (Six18ita);;
(si-1)7, (si—2)], (si-15i-2); . Eqs. (13), (16) tell us that two of them can be in-
terchanged by field variables h;yq, hi_;. Consequently, we obtain a set of five
equations which relate five magnetizations (s;_s), (s;_1), (8:), (sig1), {si42) to
four auxiliary unknowns, say (si+1); ($i415i42);, Au..lﬂvw_ A.&Lm..lmvn“.m:m three
field variables h;_ 1, hi, hit1. The analytical derivation of the above mentioned set
is simple but time consuming. We therefore write down the final result:

ﬂlﬁlAlM.Mv_IV?.. =)= -z})hi + jy;), (17a)

1- A.mﬂ.luv
1= (si)
HIH.WA.M..MIWVAF =)= (zf - ) [jz7 + 3% + b (s +3y7], (17¢)

_Hr ?...&3.. =) = (27 —y7) [izF + 720F + hia(ha + 5u))]
~iei (17d)

1 . - 1. ee -
Ty = 1) = bk 507 + 57 aF +5) 4 707 =+ yF 7 )+

(hi = 1) = (1 - 27)(h: + jy), (17b)

+(1+5)7y; o, (17e)

where a simplified notation
z} = (si1);, o7 = (sic1);; (182)
v = (siq1siga)i,  up = (si—18i-2); (18b)

has been used.

3. NUMERICAL RESULTS

We have solved the set of Egs. (17a-e) for 50 sites with periodical boundary
conditions by the Newton algorithm for various distributions of the field. Owing
to the form of (17a—e), the number of equations can be reduced to be equal to the
number of sites. Indeed, if trial values of magnetizations (s;) are given, one can
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find, from (17a-d), vaj % : 5 e .
PquRtion ( ), values of Zi ¥ - Their substitution into (17¢) gives a single

fil{siz2), (si1), (s:) (8i41) ) (8i42)) = 0

me site. The Newton algorithm needs also the Jacobi matrix Jij = 8fi/8(s;). To
n %A SL.me of A.Nc. mwa given i, one has to differentiate Eqs. (17a-d) with respect
$i-2) ..., (si12), and to calculate, from the obtained s i

. tem of
mn.%\% Y m.c.#\m ) ystem of equations,
ﬁO.:w results confirm our suggestion that the periodica] boundary conditions do
Mo :M ozno:MM the magnetization considerably. Thus, changing the number of sites
rom 0 45, or f) izati i
been chanes or irom 45 to 50, only magnetizations on the last/first 3-4 sites have
| ﬁmmwﬂw the .<m.~:am of (s;),z, ¥, the DCF can be calculated easily. To do so
mM :w. i QoannM meWmS (17a - m» with respect to (si). Then, from the first mo_:_
uations, we find §z; 18(s;),0y% /8 (s. - Thei itution i i
cimple Ty O 5 : /0(s;). Their substitution into (17e) gives a
.%m.lu %.m- %NNIL

\r.ﬁ + mﬂ.ﬁ +C; 3(s;) =F(i,j) (19)

M.Mﬁ‘r \v»..m.mm? C; being the functions of z% .S%‘ hioy, b hisgs, {5 2) (5i2a), and
5,J) # 0 for li—-jl <2 Thus, the DCF b , SR LR
system of linear equations can be found from the three-diagonal

For the homogeneous case A = G
i =0 = A B; = B. All our numerical results
confirm that for our model B> 24. Thus, the DCF decreases exponentially as

Cij ~ exp(=Afi — j|) (20a)

2cosh ) = B/A. (20b)

For _U.vw EroE.omouwocm case, Eq. (19) has only an exponentially decreasing (in-
QomuE.mv solution [6]. Thus, we have proved that the DCF has to decrease ex-
Ponentially. To find parameter A for this case, we solved the system of 50 linear
Eqgs. (19) and then calculated the parameters of

logcij = —Ali - j] + &.

model. Its existence is caused by the divergence of A at J — 0 (T — oo; the system
is completely disordered) and J — oo(T — 0; only the ferromagnetic ground state
contributes to the free energy and so there are no correlations in the system).
On the other hand, in the antiferromagnetic region (J < 0) the infinite value of
A is attained if J approaches zero. The ground state of the system includes an
infinite number of microscopic states which do not contain a cluster of three spins
5i-1, 34, Si+1 = 1. Therefore, in the limit J — —co0 X acquires a certain value Ao,

independently of the applied field.

'
-
o
-

Fig. 1. The plots of A(J) for various values of the constant field
H = —1(o), 0(0), 1(8), 2(e).

The results for the case of a varying field H, with the mean value (H) and
the dispersion ¢ are represented in Figs. 2, 3. The field was obtained by rescaling
suitably a given sequence of random numbers generated by a generator of random
numbers. In Fig. 2, we show an approximately linear decay of the DCF logarithm
for J = —1, (H) = 0 and various values of dispersion . It is clear that the increase
of ¢ implies a more rapid decay of the DCF. This fact is demonstrated in Fig. 3
where the dependence of A on o for various values of J and (H) is plotted. A
relatively large dispersion of the obtained results for high values of ¢ is given by
the fact that the insufficient number of the considered sites does not allow to attain

71



w correct stationary distribution of random fields. In spite of this, the tendency of
lines in the (), o) plane is evident.
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Fig. 2. The decay of the DCF for the case of an- Fig. 3. The plots of Ao) for
tiferromagnetic three-neighbour interactions J — -L (H) =0 (0); J =
J = —1 and the varying field with a zero mean -1,(H) = 2 @); J = 0.8,
value and dispersion o = (#), 2 (1), 3 (O), (H) = 0(e).

4(0), 5 (m), 6 (v), 7 (), 8 (0), 9 (a).

4. CONCLUSION

In this paper, we have investigated the effect of a varying field on the decay of
the long-range DCF. As 5 model system we have used the lattice gas defined by the
Hamiltonian (1). This simple model has been studied within the recently developed
method [3]. Its DCF can be obtained explicitly owing to a judicious form of the
three-spin interaction leading to two constraints for introduced auxiliary quantities

(13), (16). The analysis of the resulting Eqs. (17a~d) indicates a more rapid decay
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of the DCF by increasing the dispersion of the applied field (see Fig. 3). This
fact is clearly seen from the three-diagonal system of linear equations (19), too.
This system induces the exponential decay of the DCF for a uniform field. The
presence of an inhomogeneity in (19) implies also the exponential decay which is,
according to [6], more rapid than the decay for the homogeneous case. We therefore
conclude that the DCF concept can be applied also for the inhomogenous and
random models.
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E22EKT HEOOHOPOIHOCTH HA IIPAMBIE
KOPPEJIAIIMOHHELIE 3YHKIIMU ONHNOHSMMUMOS PEIIETKN
TFA3A C MHOI'OKPATHEIM B3AVUMOJIEVICTBUEM.

OcHoBHolt nemo paGothi sBIAETCH WCCIeI0OBAHNE BJIMAHUA U3IMEHAIOIE-
rocA MONA HA NPAMYIO KOPPeNaIlMOHHLIO $ynxmmo (OK®) crmuosoit uemno-
4yrxu. Ilpo6rema mayvaerca c [IPMMEHEHNEM DEWIETKM ra3a ¢ TPeMA Nocie-
AYIOWMMU B3aMMOAEHCTBUAMY, nockonbKy JIK® mambmero B3aUMOIEHCTBUA
MOXeT GBITh MOJIy4YeHa HEMOCPECTBEHHO. Yucnenunle pacyern NOKA3bIBAIOT
Ha yckopenntit pacnaa JK® c mapacraomeii aucnepcueit cymecTsyioniero
noada. 9to obcToATENHCTBO TIO3BOJIAET NMPUMEHNTh obmyio waero JIK®P npu
MCCJIeNOBAHNM HEO HOPOMHBIX CHUCTEM.
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