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MODEL OF ACETYLENE SYNTHESIS FROM
METHANE IN A HYDROGEN PLASMA JETY

PLOTCZYK, W. W.,1) Warsaw

The energy consumption in the process of acetylene synthesis is presented
in the form of the analytic dependences as a
hydrogen/methane volume ratio and reaction chamber efficiency. On the basis

of the earlier described quasiequilibrium process those dependences were elab-
orated by the rotatability Box-Hunter method.

function of reaction temperature,

L INTRODUCTION

The synthesis of acetylene from methane is one of the most frequently mod-
elled processes oceurring in an equilibrium plasma jet [1
thermodynamic as well as kinetic computational models
final parameters, among them a yield of the acetylene
were elaborated. A large number of reaction parameters makes difficult a univocal
analytical description of the process and the establishing of essential criteria of its
effectivity. The statistical methods of the planning of ex

periments have been ap-
plied in the analysis and the optimizing of various physical and chemical processes
[9-12].

The aim of the presented work was to test the statistical methods of exper-
iment planning as a way to the energy prediction in the process of the acetylene
from methane synthesis in a hydrogen plasma jet. The investigations consist in a
numerical simulation of the course of the acetylene synthesis process. The equilib-
rium model of the process, which has been already elaborated [6]
basis. In the model the energy consumption was calculated from
reaction temperature, the composition of the methane-hydrogen
efficiency of both a plasma generator and a reaction chamber.

-8]. A large number of
for the evaluation of the
synthesis from methane,

, was taken as a
a known initial
mixture and the
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II. MODEL CONSIDERATION

The yield of the process of acetylene synthesis from methane is nrﬂ._.mo_..mm
i jon degree and an-energy consumption
i substrate in-product conversion nerg, !

Ema_.ovw_wemoa of 1 m?® of acetylene. The energy 8:25.35: 15 a Ewivmwﬁwun MM

M.rm nwmn of the plasma method of the acetylene production E A num onmoO b
calculation methods of the energy consumption for the production process of C2H,

i j ted [1-7].

e in a plasma jet were elabora . . -
?oBMﬂ M“””on mbmﬂ character of the parameters influencing the energy Mo_:mpmd“w.,o
tion depend, in a considerable degree, on the wnomﬁmmm calculation .Somm ME e
rocess of m.oo@_o:m synthesis from methane mwcgmm._m. On the rhm_m.o Mo model
Mozmam_.mn._ou [6] the energy consumption can be described by the following 2

2. AHS(C2H2) =BG
Em ren — x&DE:@H_AV - Dmiﬁﬂnv 1

1)

EC =

. . - of
i i thane calculated in relation to on energy o
E,, - is the specific energy of me .
M__anm_wmhm jet, AH3 (CaHy) - is the enthalpy of acetylene mwunvom_mmwows :._mnrMMM
en
at a”mnnrwum nwavmnwasm. AHW(Ty), AH S.GS - are ...rm.mim_mgw o ovuu Mmﬂmaﬁﬁos
methane at quenching temperature, repsectively, ECy;j - 1s the energy

ted relative to plasma jet energy. . . .
nw?_ﬂw mwo_HE be emphasized that the specific energy of methane which appears in

the formula (1) depends also on the initial reaction temperature [6]:
Em = XAHAT) + AHR(T:), 2

where AH(T,), AHu(Ty) - are the enthalpy of hydrogen and methane at reaction
r)s
rature, respectively. .
85@%35 the elaborated quasiequilibrium model of the process m:._a _..w.a “Meo“”
lues of the reaction temperature, a hydrogen /methane molar —.w“.o W mm natron
<wm actor chamber efficiency, it is possible to op_nc_wmo the effec ive-en m_
cons 330: However, the model does not allow to derive a direct functiona
consumption. T,
dependence such as this:

@QE. = \ANJ%“ X, dﬁ;v. va

Those dependences were established by the method of the statistical Ewmuamm_vm
of experiments [9] one decided to derive the dependence shown as a fromula (3).

The second order Box-Hunter method of the rotability planning was applied [13].
- The se

f the
It is a five level multifactor planning. In the presented work the number o
factors was limited to 3.
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For three factors the re i i
: gression equation of the planned i
expressed in the following from: ’ o€ experiment can be

EC,; =
Cpj ?1.?3+Su~+@wnw+?u3§+?u~_Nu+~su3~u+?-m+€u~w+~du~w. (4)

In the equation the dimensi i
i sionless variables are used. i
calculated in the following manner: . These variables are

5= a; —a;
Dam.o Amv
where
ai0 ground level 2, =0
Aa;p variation interval

a; = a0+ Aa;o higher level z; = +1
"

e =a;0— Aajg lowerlevel 2 =-1

] .H_MM experiment plans (using dimensionless variables) and the calculated values
ol an etlective energy consumption ECp; are diven in Table 1.

The regression equation (4) calculated i i
ted in accord with the method
by Akhnazarova and Kafarov [10] is as follows: o presented

ECy; =54.18 + 13.362; — 14.3325 4+ 13.1723 + 9.8621.23 + 13.892;.25
+0.232.23 + 14.2227 + 7.3822 4+ 2.2322. (6)

ﬁ $~> no:.ww:wo.u n.&. dependences of ECp; on the reaction temperature according
© the quasiequilibrium model and to the regression equation (5) for:
a)z=2and .4 =05 .
b) 2 = 0.5 and 5,4 = 0.9
are presented in Fig. 1.
. The regression mac.maou. as shown in Fig., adequately describes the dependence
o muﬂﬂﬂon@ consumption ECy; on the reaction temperature.
e Table 1 was completed with the methane-to-acetylene conversion degrees

Uac. The U, was calculated from the following formula :

Usc = 2Em/EC,,;.

The formula results from the definitions of the effective energy consumption
as well as the methane to acetylene conversion degree.

ECpj = Epj[Vac = Ep;j[0.5VinUse = 2B [Use )
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Table 1

Plan of experiment for the calculation of parameters of equation (4) calculated values of
Uqe from equation (6)

Level Factor
z 2 z3
Hﬂﬁmﬂ.._ Nrch k
Az 600 0.15 1
+1 3800 0.85 3
0 3200 0.70 2
- 2600 0.55 1
Number of Design matrix EC,; Uac
experiment z 23 23 MJI/m?) [mol.% ]
1 -1 -1 -1 87.8 26.9
. 2 +1 -1 -1 68.7 83.8
3 -1 +1 -1 41.7 56.7
4 +1 +1 -1 58.3 99.9
5 -1 -1 +1 91.4 42.1
6 +1 -1 -1 124.0 95.3
7 -1 +1 +1 42.5 90.6
8 +1 +1 +1 118.0 99.9
9 -1.682 0 0 70.5 33.6
10 +1.682 0 0 116.0 99.9
11 0 —1.682 0 99.0 50.7
12 0 +1.682 0 50.3 99.9
13 0 0 —1.682 41.0 63.9
14 0 0 +1.682 77.8 95.3
15 0 0- 0 55.3 94.2
16 0 0 0 53.6 93.5
17 0 0 0 54.0 92.9
18 0 0 0 54.7 91.7
19 0 0 0 55.1 91.1
20 0 0 0 55.4 90.5

Where V,. - volume of acetylene, Vi, - volume of methane.
The effective specific energy of the methane Ey, was also defined as the ratio
of a plasma jet energy to the volume of a substrate introduced into the reactor.
' Then, using the formulas (5) and (2) the influence of a hydrogen/methane ratio
and reaction chamber as well as plasma torch efficiences on the energy consumption
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Fig. 1. A comparison
¢ of depend .
GEeBaTE ! 2] ?&w ences of energy consumption F

— — — equation (5).

S8 Cp; on the reaction tem-
=0.5;b) £ =0.5 and 5ych = 0.9; — quasiequilibrium model,

Table 2

The dependence between
the energy consumpti
well 2 5 plaomstron s e qumu"wm—n.wv;a hydrogen-methane ratio z as

. s, EC [M3/m?]
M/m?) a
0.4 0.5 0.6 0.7 0.8
M MMW 225 180 150 129 113
: m#.m 174 139 116 99.6 871
: hw.m 135 108 90.3 77.3 mﬂ.q
2 108 87.0 72.5 62.1 mA.*

was analyzed. The results are listed in Tables 2 and 3.

Asiti :

oher M M. MM MWOSb in ch_a 2 and 3 the decrease of the energy consumption is aided
en-methane ratio is decreased and a r i

. . tion chamber effici i

increased. The lowering of the ene i -t  EC,, valuwis
: rgy consumption EC for i

favored by an increase of o L e

a plasmatron efficiency. These conclusi @
! . . clusion:
by our eatlier experimental works as well as literature data {16] " aee supported
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Table 3

The dependence between the energy consumption and the reaction chambers nrch as well
as a plasmatron efficiency (T = 3200,z = 2)

EC [MJI/m?]
Tirch NQ‘M
n

[M/m®] 0.4 0.5 0.6 0.7 0.8
0.4 112 280 224 187 160 140
0.55 76.1 190 152 127 109 95.1
0.7 54.1 135 108 90.3 773 67.7
0.85 46.3 116 92.5 77.1 66.1 57.8

Table 4

Experimental results obtained using a reactor on a large laboratory scale

Parameters Units 1 2 3 4
pY kW 61.2 64.3 96.7 99.8
Va m®/per 1h 10 12.5 18 18
Vin m?® /per 1h 12 9 15 15

z 1 0.83 1.33 1.2 1.2

] % 84.6 88.3 88.4 85.4

T K 3090 3330 3260 3300
E. MJ/m®*CH, 15.2 22.4 20.5 20.9
Nreh % 78.7 75.1 78.9 78.9
ECy; MI/m*C,Ha 53.6 59.7 59.6 60.4
EC MJ/m*C,H, 63.3 67.6 67.5 67.5
Ue % 64.8 76.5 69.8 69.5
Uac % 58.0 76.1 68.7 63.4
cCH}" vol.% 13.9 14.8 8.3 6.7
cC,H}" vol.% 9.7 10.2 9.8 9.8

*} P - power of arc discharge **) ¢CHy, cC2H; - concentrations of CHy and C.H,
respectively, in post-reaction temperature.

The average efficiencies of a plasmatron and a reaction chamber obtained at
£=9 in a reactor with an arc power 10-40 kW EL& were equal to 0.56 and 0.7,
respectively. An occurrence of an optimal range of a reaction temperature (2800-
3300 K) in which the effective energy consumption reaches a minimum value of
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60-70 MJ/m3 was indicated. Also the EC obtains a minimum value of 110-130
MJ/cu.m. The U,, reaches 54-85%. .

The experiments at an arc power of 60-110 kW [6,8,15] were carried out with
a plasmatron operating at high efficiency 80-88%. These conditions allowed us
to perform the measurements at z=0.8-1.3. The reaction chamber efficiency was
80%.

As it is shown in Table 4 under the above conditions the effective energy
consumption attained 52-60 MJ /m3. The energy consumption attained 52-60
MJ/m®. The energy consumption EC was found to be 60-70 MJ /m3, which is
significantly lower than at z=2. The CHy to CyH; conversion reaches 54-76%.

Jasko and Laktushin [16] obtained in a reactor with the arc power 0.4-
1 MW at 2=0.5-0.7 the effective energy consumption ECp; 43-50 MJ/m3. The
reaction products were quenched by means of a water spray.

The considerations mentioned above show that the methods of experiment
planning are useful for the prediction of the CoH, from CH; synthesis yield on the
basis of an adequate quasiequilibrium process model.
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OPOJIA
MOJIENI CAHTE3A AIETHJIEHA 73 METAHA B CTPYE IJIA3MBI BOJ 1

HMUHHO?‘-HQ !Hcﬂwﬁﬁhﬁﬂﬂo OHEeprHE B nponecce CHHTE3a ameTHICHa B A-Guuzm aHa-

¢} YPHL. OTHOUICHHSA BE! AOPON. y
AHTHYECCKOH 3aBHCHMOCTH OT TEeMIepaTypHl, ob6peMa BOOpPONA K METAH H
&eﬂ' THBHOCTH UON.NH‘OHNOH XaMepHhl. QgHﬁHzOﬂ TH NMOOYIECHHI Ha OCHOBE Hu:fEﬂ ony-
GRRKOBAHH HEEM MeTofa p =
BIX NWS‘VNU’OUOGNE* H@Opﬂﬁﬂou‘ HO TaxXxe C NMpHMEHE € ofa PpOTa-

6eavHocTE Boxca-XyHTepa.
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