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" NON-STATIONARY COMPUTER MODEL
OF THE ASYMPTOTIC REGION OF AN ELECTRIC
ARC GAS HEATER -

JENISTA, 1.1), SEDLACEK, Z.1), Prague

A method for the numerical solution is presented of the non-stationary
energy balance equation in the asymptotic region of an electric arc gas heater
with axial gas supply which makes it possible to distinguish between stable and
unstable solutions and to examine in detail the transient phenomena occurring
during the formation of the stationary state.
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The present paper is concerned with the computer model of the asymptotic
region of the discharge channel of an electric arc gas heater with cylindrical ge-
ometry (the so-called fully developed electric arc). The system of equations of
magnetohydrodynamics describing this region is reduced to the equation of energy
balance.

A number of methods exists for the solution of the stationary variant of this
equation (the so-called Elenbaas—Heller equation). The simplest of these is the
so-called channel model [2] based on the approximation of the radial profile of
the electric conductivity by a piece-wise constant function which, in the elemen-
tary case, may consist of two sections: constant conductivity at the axis and zero
conductivity at the wall. Other methods use approximation by piece-wise linear
functions, expansion into Bessel functions etc. (1]. The most accurate methods use
procedures which are unavoidable for two-dimensional (r, z) models: the stationary
state is achieved from a suitably chosen initial distribution of physical quantities by
an iterative process over a succession of intermediate states. In the present paper
we solve the real transient process during the formation of the stationary state.
This makes it possible to study the pon-stationary behaviour of an arc gas greater

such as the process of arc ignition dynamics or the time response of an electric arc
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as an element of the electrical circuit with the source of the electromotoric force,
resistance, capacity and inductivity. This is important for the investigation of the
stability of operation of real arc gas heaters.

I1. BASIC EQUATIONS

The dynamics of electric arc plasma is described by the set of equations of
magnetohydrodynamics which include the equation of continuity, the equation of
motion (the Navier—Stokes equation with the Lorentz force), the equation of energy
balance, the Maxwell equations, the generalized Ohm’s law and the state equation
of a perfect gas.

We assume a cylindrical coordinate system 1, ¢, 2 and the boundary-layer ap-
proximation (radial gradients are much greater than axial gradients), which sim-
plifies significantly the basic set of equations. Under these assumptions the set of
equations of magnetohydrodynamics may be written as follows [2]:

Continuity equation: :
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Energy balance equation:
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The equation of state:
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Here the following notation is used: 7, ¢, z— cylindrical coordinates, v, w, u—
velocity components in a cylindrical coordinate system, p—hydrodynamic pressure,
jz, jr—2 and r components of a current density j, E,—z component of the electric
field strength E, B—magnetic induction, H,— component of the magnetic field
strength H, o—electric conductivity, A—thermal conductivity, ——dynamic viscos-
.:?.ml.awmm density, c,—specific heat at constant pressure, ¥—radiative energy .
emitted per unit volume and unit time, h—specific enthalpy, H = h + V2 /2—the
“total” enthalpy; V2 = u? + w?, Ro—universal gas constant, M—molecular mass.

It is further necessary to specify the relevant boundary and initial conditions.
The material and thermodynamic functions o, X\ 0, 0 c, ¥, H are strongly
non-linear functions of temperature and are weakly dependent on pressure.

The above set of equations in usually regarded as-the most general mathe-
matical model of the electric arc plasma with rotational symmetry (8/3¢ = 0). It
has not been solved numerically in its most general form as yet, only particular

_ simplified models exist.

III. THE COMPUTER MODEL

Our aim was to set up a simple computer model which would enable us to study
the dynamic properties of the electric arc plasma and which would, in principle, be
suitable for possible future extensions to two- or three- dimensional models.

The computational model is derived from the above set of magnetohydrody-
namic equations under these additional assumptions:

1. The model describes the asymptotic region of a cylindrically symmetric electric
arc discharge (the fully developed electric arc) inside a circular metallic tube of
radius R, kept at a fixed temperature Tr (stabilization by a cold wall). This
means that all physical quantities are independent of the axial coordinate z.

2. The tangential (w) and radial (v) components of velocity are neglibible.

3. The gas flow is characterized by a small Mach number (M < 0.3). The kinetic
energy carried by the gas is then negligible in comparison with the heat energy and
it is possible to solve the equation of energy balance separately from the momentum
equation. .

Our task is thus to solve the equation

T 1 [ ,, 1 118, 0T
I»IT« Mmﬂw?iv;_ (10)
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with the boundary conditions

T(R,t)=Tr (fixed wall temperature) (11)
oT

T =0 (the condition of axial symmetry) (12)
r=0 2

and the initial condition

NJT._» = Ov = m.,oAu.v. R ’ Awwv
Here the dimensionless quantities
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were introduced. In numerical calculations, the results of which are presented in the
next section, the following values of the normalization constants have been used:
up = 100 ms~!, Lo = R=001m, Ty = 1000 K, go = 0.01 kgm™3, cpo = 10000
JK-kg~!, Ep = 1000 V™1, Ao = 1 WK-1m~!. The normalization constants
oo, Wo are related to the remaining ones by the formulas

Op =

gocpotolo _ 03 m.onvc.:oﬂo cnw
=1 = —
L, 0%S, W = 10°Wm (15)

so that the coefficients in the normalized equation (10) at the terms (0cp) 1o E2

and (gcp) ' ¥ are equal to unity and the characteristic Prandtl number Pr and the

characteristic Reynolds number. Re are aon?& from the normalization constants

by the relations: :

- gotoLo :

Pr= , Re= ) 16
Ao 0 (16)

where 7 is an artificially introduced ormmwo,ﬁm_.mmnwo value of viscosity. The charac-

teristic value of the product Pr Re which occurs in eq. (10) then is

h ,
PrRe= m%uwg ° _ 100. (17)
a

It is of course possible to choose any other set of normalization constants,
the above ones being chosen in such a way as to characterize average values for
the plasma of a typical arc discharge. The results are dependent on the single
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geometric parameter R which enters the set of normalization constants owing to

the convenient relation Lo = R.
It is assumed that the functions

c=0o(T), A=MT), e= oY), =6(T), ¥= ¥(T) (18)

are known.

From the mathematical point of view the equation of heat energy balance is a
second-order non-liriear partial differential equation of parabolic type. Asa method
of numerical solution we have chosen the method of lines (see, for example, [3], chap.
14, sec. 6) based on the space discretization of eq. (10) and solving the nw.n..::“..Em set
of ordinary differential equations by some suitable method. The discretization has
been done on an equidistant mesh of N points over the interval {0, R) by the usual
method of finite differences. The first and second space derivate of the temperature

are calculated by the three-point approximation formulas

WH - Tiy1— Tia (19)
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where h = R/(N — 1) is the mesh step. Thus the following set of N first-order
ordinary non-linear differential equations is obtained:
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with the boundary conditions

Tn(t) = Tr; ‘ (23)
3T +4Tin —Tiv2|  _ (24)
2h i=1
and the initial conditions
T:(0) = To(rs), i=12,..,N. (25)
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This set of equations turned out to be stiff (see, for example, [3], chap. 9, sec.1).
This means that all its solutions are damped in time and the ratio of the largest
damping time constant to the smallest one is very large. Such set of differential
equations must be solved by specialized numerical methods. We have chosen the
Gear—Hindmarsh algorithm [10] which is a predictor-corrector method with a
variable step ensuring by a special iterative v—.‘onamm in the corrector the numerical
stability of the solution and the requisite accuracy. The subprograms GEAR [4)],
GEARB [5] (for sets with a banded Jacobian matrix) and EPISODE [6] were used.
The Runge—Kutta method RKF45 [8] proved unsuitable.

" Numerical computations have been carried out for nitrogen N3z under atmo-
spheric pressure p = 10% Pa. The necessary transport and thermodynamic func-
tions o, A, o, ¢p, ¥ were available in the table form [7] in the temperature range-
500 K—30000 K with the step 500 K. These quantities are plotted in Figs. 1 to 5.
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Fig. 1. Electric conductivity of nitrogen
vs temperature.
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Fig. 2. Thermal conductivity of nitrogen vs temperature.

The interpolation in the tables of transport and thermodynamic functions has been
made by means of cubic splines so that the functional values o, A, g, ¢p, ¥ could
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Fig. 3. Mass density of nitrogen vs temperature.
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Fig. 4. Specific heat at constant pressure of nitrogen vs temperature.
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Fig. 5. Radiative energy emitted per unit volume and unit time by nitrogen
vs temperature.
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be calculated for an arbitrary temperature T. The subprograms SPLINE, SEVAL
[8] proved very efficient for this purpose.

The boundary condition at the channel wall has been fixed at Th = 500 K.
The initial condition has been chosen is the form

To(r) = (Tasis — Tr) o8 w“ +Ta. (20

IV. RESULTS OF COMPUTATION

The computer model has been thoroughly verified in a series of computational
runs. All variants of the integration methods provided by the subprograms GEAR,
GEARB and EPISODE have been tried and evaluated from the point of view of
accuracy, stability and efficiency. The influence on the accuracy of results of the
number of mesh points and of the order of approximation of the difference scheme
has also been examined.

w)
€
E
¢ Fig. 6. Computer time vs the physical
I time of the problem. Curves 1, 3, 5 show
m the performance of the subprogram GEAR

(general Jacobian matrix), curves 2, 4, 6 of
the subprogram GEARB (banded or near-
ly banded Jacobian matrix). Curves 1, 2
— Jacobian matrix approximated by finite
difference, 3, 4 — functional iteration, 5, 6
— diagonal approximation of the Jacobian
Evnm.cr The prescribed relative error was
107°.

0 5 TIME [ms]

The best performace has been found with the variants using the diagonal
approximation of the Jacobian matrix included in the subprograms GEARB and
EPISODE. It was practically ten times faster than the variant using the finite-
difference approximation of the Jacobian matrix in the subprogram GEARB. The
methods based on the functional iterations were slower. The dependence of the
requisite computer time on the physical time for the computer IBM 370/135 is
shown in Fig. 6. The differences in the computer stationary state values were
always within the bounds given by the prescribed relative error.
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Fig. 7Ta. E; vs T.zis In stationary state. Fig. 7b. E; vs Tazis in stationary state.
Curves 1, 3 — unstable branches, 2, 4 — Detail of the fine structure of the stable

stable branches. The small arrows show

the direction of the time evolution of the

axial temperature away from the unstable
~ stationary state.

branch 2 in Fig. 7a.

The physical results which have been obtained are interesting mainly from the
point of view of the discharge stability. Figures 7a and Tb show the dependence of
the electric field strength E, on the temperature Tyzis at the axis of the channel in
the stationary state. There exist three stable and three unstable branches except
for the trivial stationary solution T((r,t) = Tk (quenched arc).

The other solutions in the considered range of the electrical field strengths E,
and axial temperatures Tyzis converge either to the trivial solution (quenched arc)
or increase beyond the limits given by the temperature range in the tables of the
quantities (18). v

" 1t is remarkable that in the temperature interval 13 600 K—14 225 K the
dependence E; vs Tazis is threefold. The detail of this dependence is in an enlarged
scale presented in Fig. 7b. In Fig. 7a this fine structure is hidden in the width of
the line. Whether the stationary state will be achieved on the upper or on the
lower stable branch during the evolution depends in this region not only on the
axial temperature but also on the form of the initial condition. In all the other
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temperature regions the resulting stationary state is, in wide intervals, independent
of the shape of the initial condition.

Fig. 8 illustrates the dependence of the electric field strength E; on the to-
tal current I which flows along the channel (current-voltage characteristic). The
branches which are shown correspond to the stable branches in the preceding
E,(Tazis) diagram. The current jumps correspond to the unstable branches in
the E,(Tasis) diagram. The first current jump is caused by the dissociation of
the N3 molecules and is accompanied by an abrupt change of the stationary radial
temperature profile (cf. Fig. 9 and Fig. 10). The second current jump is obviously
caused by the decrease of ¥ (radiative energy emitted per unit volume and unit
time) in the temperature region from 17 500 K to 23 500 K and is not accompanied
by any qualitative change of the stationary temperature profile.
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1A} Fig. 8. Current-voltage characteristic.

Fig. 9 and Fig. 10 show the typical stationary temperature profiles — the
dependence of temperature on the :o:-&ioummo:m_ radius ». On both graphs the
curves No. 1 mark the temperature profile at the time instant ¢ = 0 (the initial
condition), the curves No. 2 and No. 3 indicate the stationary 35.@0328 profiles
which have been solved on a mesh of 11 and 21 points along the radius, respectively.
The stationary temperature profile shown in Fig. 9 exhibits the formation of a high
temperature core and is typical of the lowest stable branch of the current-voltage
characteristic. The temperature profile shown in Fig. 10 is typical of the two higher
stable branches: , i

Fig. 11 demonstrates the current density profiles. The individual curves 1, 2,
3, 4 correspond to stationary states with various values of Tz, and E,. For these
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profiles a steep decrease of the current density towards the wall of the channel is

characteristic.
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Fig. 9. Radial temperature profiles. Curve Fig. 10. Radial temperature profiles. Cur-

1 — initial condition; 2, 3 — stationary ve 1 — initial condition; 2, 3 — station-

temperature profiles (Tazis = 14120 K, ary temperatire ‘profiles (Tazis = 28 852

E, = 949 V/m, N =11 (curve 2), N = 21 K, E, = 1075 V/m, N = 11 (curve 2),
{curve 3)). N =21 (curve 3)).

The calculated temperature profiles can be compared with the results pub-
lished in [9]. In Fig. 12 a temperature profile from [9] is reproduced corresponding
to Tasis = 11650 K, E; = 631 V/m. According to Fig. 7a there corresponds to
this axial temperature an unstable stationary state. We have therefore compared

_the closest stable stationary profile corresponding to Tazis = 12 356 K (minimum

E, on branch 2). Although the material and thermodynamic functions for nitro-
gen utilized in [9] differ to a large extent from those in (7], which were utilized in
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Fig. 11. Radial current density profiles. Fig. 12. Radial temperature profiles. Cur-
Curve 1 — Tazis = 14718 K, E, = 1012 ves 1, 2 —— calculated stationary tempera-
V/m; 2 — Tazis = 14120 K, E; = 949 ture profiles (Tazis = 12356 K, E. = 697
V/m; 3 — Tasis = 13691 K, E; = 885 V/m, N = 11 (curve 1), N = 21 {curve
V/m, 4 — Tazis = 12 457 K, E; 705 2)), curve 3 —’a temperature profile pub-
V/m. lished in [9] (Tazi. = 11650 K, E: = 631
V/m).
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Fig. 13. The evolution of the axial temperature. AT(t) = Tagis(00) —Tazis(t). Curve 1 —
the approach to the stationary value Tazis(00) = 14120 K from the value T4zi.(0) = 10 000
K, for E; = 949 V/m, 2 — the value Tazis(o0) = 28852 K, Tozis(0) = 23000 K, E, = 1075
V/m. The corresponding initial conditions and stationary temperature profiles are in
Fig: 9 and 10, respectively. The 1 K level approximately corresponds to the magnitude
5 of the rounding noise of the time integration.

our computations, it is apparent from Fig. 12 that the agreement of the results 1s
relatively good.

As an example of the non-stationary behaviour of the electric arc discharge
we present in Fig. 13 two time dependences of the axial temperature illustrating
the transient phenomenon during the approach to equilibrium. It is apparent that
the relaxation times are of the order of milliseconds and that at the beginning the
plot is significantly different from the exponential. The exponential behaviour is
approached only in the close vicinity of the stationary state.

V. CONCLUSION

We hope that we have demonstrated the usefulness of the non-stationary model
of the discharge channel of an electric arc gas heater. :

The experience with the present simple model indicates that it will be possible
to employ the same concept as a basis for the construction of a two-dimensional
model. We have proved the realizability of the non-stationary model, the appli-
cability of the Gear—Hindmarsh algorithm for the time integration of the result-
ing set of differential equations (regardless of other possible methods of the space
discretization) and the sufficient accuracy of the formation of the material and
thermodynamic function by means of a simple cubic spline interpolation.

We intend to extend the present computer model by the model of an external
electrical circuit with a source of electromotive force and resistance and to study
certain transient phenomena, like the ignition process. The solutions for other
working gases (hydrogen, argon, water vapour) are also being considered.
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HECTAIIMOHAPHASA YHCIEHHAA MOJIENIb ACHMITQTUYECKON OBIIACTH
MIABMOTPOHA

B pa6oTe npHEBefieH K14 THCICHHOro pelileHEA HECTAHHOHAPDHOrO ypaBHenud 6ananca
€HEeprEH B ACHMITOTHYECKOH 061aCTH NIa3MOTPOHA C AKCHANLHLIM HOfBOXOM Ia3a, KoTO-
PHIH flelaeT BOIMOXHEIM PasiHIeHEe YCTOHYHBHX H HEYCTOR YHBLIX PelleHnH B leTalbHoe
PacCMOTpEeHHEE MEPEXONHOrO ABIEHHA NPHE YCTAHOBACHHHE CTAIHOHAPHOTO COCTOAHHA.
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