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A DIRECT ALGEBRAIC METHOD OF SOLVING
A NONLINEAR EQUATION

PUDLAK, M.1), Kosice, HRONEK, 1.2), Praha

(the definition is given below) of nonlinear models that have beep successfully

applied in different fields of solid state physics [1]. In our opinion, the developed
approach to constricting multisoliton solutions js one of the simplest approaches,
and the fact that it apparently cannot be simplified for the sine Gordon equation
(SG) is likely.

and its vector generalizations for periodic solutions has beep suggested in [2].

Two models are used as an example. The first is the wellknown (5G) model.
The second is a nonstationary Pejerls model in the mv.wwoxmiwzoa satisfying the
“smallness” of the forbidden band when a nonstationary Schroedinger operator
transforms into a nonstationary Dirac operator (7). The choice of these continuouys
dynamic models is not accidental.- Notably, in spite of the fact that both these
models are solved by the same scheme, there is.a strong difference between them.
It consists in that the model connected with the Dirac operator (7) is solved im-
mediately, whereas the SG equation is to be transformed to an equivalent system
of equations and only then a general method can be applied.
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The examples to be considered below belong to a class of models possessing
a remarkable property ie. a complication of a spectral parameter (in our case,
a transition from the plane of variable A to the Riemann surface of the function
(k + 1/k) simplified. the scheme of the solution. Especially, for the eigenvalue
problem Ly = At connected with the SG equation the operator L is of the fourth
order [3]. Upon changing the spectral parameter (A — k + 1/k) the order of L
decreases to two (see for instance [4]). It is to be noted that there are other models
with the same property. For example, for the relativistic-invariant Thirring model
it is convenient to pass from the complex plane A to be Riemann surface of the the
function k2 + 1/k2, .

The main point of the construction expounded below is the use of the fact
that the solution of the equations studied are to be searched in a special form
representing the “degeneracy” of the Baker—Akhiezer functions depending on the
spectral parameter k and also on the auxiliary variables &F, k(i=1,2,...M )[6):

u\\AH. “« kv = QZAHJ n. &v&GA.\P s. ky

where (z,, k) see (3) and Qu(z,¢, k) = ao(z, )kN + a)(z, OEN-14 . -+ay(z,t)
is the polynomial of a ‘certain ‘degree N. Moreover, the common feature of the
considered class of models is that ¥(z,1, k) is a meromorphic funciion of the variable
having two essential singular points P, (k=0) and Py, (k = 00). A

There are two reasons why the SG equations are used as an example to consider
the method in detail. First, we want to show how to proceed in the cases when
the method cannot be applied immediately to the initial equations. Secondly the
SG equation does not encounter additional technical difficulties connected with the
solution of self-consistency equations (7) and (8). .

In the coordinates of the light cone the SG equation uen(€,m) = 4sinu(E, n)
is equivalent to the condition of compatibility of the problems 8.y = Uy, Oy =
VY, 05U — 8V + [U,V] = 0 where ¥ = (¥1,92)" and matrices U, V have the
form: : L . g Aexp(—iu)

_ | —5ue T exp(—iu
U= ﬁ 1/2 w:L ’ V= Txvﬁnv 0 ﬁ M)
with ug = deu(g, n). 4
- Using (1) we get for the functions ¥1 and ¢z the following equations:

. ) )
et = lw:ﬁ? +v2 Oy = Yo+ w:mﬁu.. . AB
QM&N =1 OKUQQV %:.ﬁm = Ay munmuﬁlnmﬂv

Now we introduce, according to [6], the functions 4; and ¥2, admitting in the
vicinity of two singular points Py and Py, expansions in the form: (for the point

4

Fo the local parameter & is chosen as k = A-1/ )

Vil m k) = 14 €196, m)k* | exp(ek + n/k) (3a)
s=1
Va(&om k) = k (14 €296, )i exp(§k + n/k), (35)
=1 .

Analogously, in the vicinity of P, (the local parameter k = A1/2) we have.

Yillin k) =ci(e,n) 14 260, )k exp(Ek + n/k) Q&

s=1

H [ee] .

V2o k) = cae,m) [14 M.mmwga%,. Pk +a/k). ()
Substituting expansions (3) and (4) into (2) and equating the coefficients at the
same degrees of k we get the recurrence relations for the functions E(z t)(i,7 =
rww&.uovoowhnﬂ.w“...v T T

i 10 : i
1 = —35Ug, s4+1 — w.ﬂ~ + %..wmnm.mo = |W=mm.u~o.
(8)
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According to the general scheme [6], to derive ap M soliton solution one should de-

fine M pairs of auxiliary parameters «} and ; (owing to the presence of symmetry

we can choose x} = —&;") and M conditions of the bond:
M
YE) = 3 (g ). )
i=1 g

.Sr@:w @ij is the matrix M x M. To determine u(€,7n) we use the first relation in 5)
n which £1°(¢,7) and €2°(¢, 1) are determined from a system of linear equations
.Amv corresponding to each solution. We can immediately verify that for o, — oy =
lag (ag is the real number) we get a one-soliton solution; for oy = Yy o

! = mQr Q3 =
o = = F= 1 = 5
W A.QS gz = S Kl = —k] = &y, 6} = K2 = K2 We get a two soliton
so :M._oa_ M:m m.mm+=:::m X2 = @, ay; = —q, 11 = gy = (; aw Ta+4+if, kT =
—_— e o - ~ H B
(x7), & = (1), x5 = —kF we get a breather:

o mmzﬁ Mw.mm oy + 2080 + ﬁoN
u(€, ) = darctg wr?ﬁmv/

cosh @21 5% + 2an + SL




As a second example we consider the nonstationary Peierls problem (for a
M‘_ozw aoznz.w_,..mH mg.amimi see [5]) connected with an operator -of the Dirac type.
UrM vuwzomﬁ implies the search mo~. a self-consistent state of electrons and lattice.

etermunation of the ground state is reduced to the solution of the equation [5]:

%Y - 030e + [0 — A*(2,1) — 0y A, 1) = 0 @)

with the equation of the mm:.oonm.mmwmun%

i \ ATYo- 9% = AA — uGRA + X02A + 200,0,8 4 A, AAP2. @)
Here ¢+ (z, ¢, ?V = (Y1, ¥3) is the two-component spinor; o; is the s.mr Pauli matrix
(01 = (07 + ”qumv.mum A AL Ay, A, # are phenomenological constants, dI' =
Uchmlmi%n &. Yol lis a density of states, dp a differential of the quasi-moment, v
Is an occupation number and the angle brackets {. . S here denote averaging over
Mﬂo Tbm.; of the system (f), = L-1 h.h f(z)dz [6]. L is the system’s length and
.T: t) is mr.m oamw.vwgsogn (gap parameter). To find soliton solutions of eq. (7)
with condition (8) it is convenient to renormalize the function ¥(z,t,k): v

z, = _¥(=z,t,k) =
®(z;t, k) (k~w1). . .(k—&n)

- = ri(z, 1) . 2
= ~.8+M oxvﬁ_Tn++-»Lv.

£=0 k —Ki

(9)

where _E.v_n =1, 2+ = Ao(t £ 2)/2, ro, see below. The conditions (6) for the
renormalizes function (9) can be written in the form:

- . 2
i nMw &z, t,k)(k — o )(k — am;w = Mn&.e?.ﬁav (10)
i=1

.Umbono. by ®,(z,t, k) the function of the form (9) mmam&&_m the condition ( 10) and
normalized so that &(k = 0)=0, (re =1):

Dy (z,t,k) = k +W fi(x, Ok . A T 213
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i=1

By analogy we normalize ®5(z,t, k) by the condition Yk=0)=1, (reo = 0):

®y(z,t,k) = — 10 +M~w Fi(z, t)k A\n z_
B A L e UL | B
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For further consideration it is important that the function of the type (9)
constructed by us apart from the poles at the points k = ki(i=1,2,...,N) has
singularities also at k£ = 0 and k = co. In the vicinity of these points the functions

®(z,t, k) determined by (11) and (12) can be represented as

Bi(z,t, k) = 1+ Y 61z, )k~ b explikzy]

- s=1 A..—Av
Pa(z,t,k) =< Y €2, t)k* 5 exp [ikzy]

s=1

Analogously, as k — 0:
- - 12 s .Nh
&y (z,t,k) = mm. (z, )k } exp __ . _ (15a)
Doz, t, k) =<1+ me»?. 1)k’ » exp —_m\nﬂ_ : (15b)
s=1

For the quantities £¥(z, t), using (7) we get

i€l = ~A%(z,1), O_E' =i(|A2 - 1), i€}? = A(z, 1),
i w.w..w,-*v %+m.w_. = I.D...Muuu. _mw.n—.n + a_ .mw — mew‘ . . AH@V
02 =i(lAR-1), s=1,2,.....,

where the notation 0y = A%m“_n Z). The relations (16) are used as a basis for
constructing solutions (7) with the equations of self-consistency (8).

We shall not consider this model any more as the derivation of the solutions
A(z,t) and the wave functions ®1(z,, k) and ®5(z, ¢, k) of electrons in the presence
of a kink (topological solitons) and a polaron can be found in detail in [5]-
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IPAMEA ANTEBPAMYECKHN METO]| PEMERIA
HENHHERHBINX YPABHEHH

Merop npegrannavexn x BRIECICHHIO CONETOHHHKX pelueHn YpaBuenns Cun-Topona

H HeNpepHBHOK HecTanuoHapuo#i mopern Rrenextpuxa [lafiepaca crasamnoro c onepa-
TopoM [lmpaxa, 910 e mossoxser TPEMEHEHHE METORA 06PATHOrO paccesanus.




