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MICROSCOPIC ORDER PARAMETERS IN LIQUID
CRYSTALS

SEBEK, 1.!), Bratislava

Microscopic order parameters based on the pair molecular interaction are
introduced: They are defined as the expansion coefficients of the Mayer function
fi; to the series of the Wigner rotation functions. The temperature behaviour of
microscopic order parameters offers a new qualitative view on phase transitions
and on pretransitional effects in condensed phases. The order parameters of-
fer a unified view of the translational, directional and orientational microscopic
structure of phases. A preliminary analysis of various aspects of an orientational
microscopic structure of nematics is presented. Distinguishing between direc-
tional and purely translational microscopic ordering, the work gives also a new
insight into the origin of the translational structure in smectic and columnar
liquid crystals.

1. INTRODUCTION

Order parameters characterize the structural order and the physical properties
of liquid crystals. They have been introduced to quantify the degree of the ordering
of “intermediate”, i.e. liquid crystal phases in comparison with the perfect order
of ideal crystals [1].

The known number of different types of liquid crystal structures continuously
increases. To describe them adequately it is necessary to introduce new order
parameters [2].

The greater number of conceptions and definitions of.orientational and trans-
lational order parameters and their mathematical description is known [1—3]. Due
to the flexibility of molecules [4], and due to the existence of fluctuations and aver-
aged mean fields in liquid crystals [5] the definition of the order parameters is the
subject of a continuous discussion.
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A general analysis of the order parameters in terms of the Wigner rotation
functions (WRF) has been given by Zannoni [6]. For any condensed state the
singlet distribution function can be written in the form of expansion

PO(r,Q) =" Prma(k) exp(ik.r) D . () 1)

where (r, Q) describe the position and olm.imﬁow of a molecule in the ensemble, k
is the lattice vector of the phase in reciprocal space and DY, () are the Wigner
rotation functions (WRF). From the inverse transformation of eq. (1) it is clear that
the expansion coefficients Ppmq(k) represent the order parameters of the system
(6]

Prmn(k) = K({cos(k.r)Dr, ,(Q)) (2
(K is the normalization constant). In particular the coefficients Pygo(k) and

Prmn(0) represent positional and orientational order parameters respectively.
The expansion (1) represents an infinite orthogonal series. The number of

considered order parameters is usually reduced on the basis of the known symmetry -

properties of the mesophase and of its constituent molecules [6]. The present paper
shows that the a priori unknown symmetry properties of the phase can be deduced
from the properties of pair interaction. For these reasons the microscopic order
parameters are introduced.

II. gH,OHwOmOOHuHO ORDER PARAMETERS

IL.1. Definition

The configuration partition function Qu of the ensemble of N interacting
molecules can be written in the form [7]

=(N)™? \ X" exp .Tmez:. 3)

where U(X™) is the interaction energy of the whole ensemble. XV and dXVM
represent the set of the configuration coordinates (R:,%) and their corresponding
differentials to each individual molecule of the ensemble. In the approximation
of pair-wise additive interactions between molecules of the ensemble, the partition
function has the form {7]

= AZ_V|~\QXZoxv lmmsk..._kb
(4)
= ) [ ax™ [Tewp {-800%, X,)) |
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The ensemble partition function can be rewritten in terms of the so-called Mayer
functions {7]
fij = (exp {~BU (Xi, X;)} - 1) (5)

Then the partition function has the form of the sum of integrals [7]
an = ()~ [T+ 0ax® = W7 [14 0 5+ X ifur+- ™.
4 i .

As long as the pair interaction function of liquid crystal molecules depends on
their mutual orientation, the Mayer functions will depend on the space orientation-
translational configuration of molecules, too.

The orientationally dependent pair interaction of molecules can be expanded
to the general series of the Wigner rotation functions [8, 9, 10]

Uas =Y K*'(R)'D*(2)D'(). (7)
k!

In eq. (7) a laboratory axis system referring to the axes of molecule A is used. R
together with the spherical angles ® = (8, ¢) describe the mutual configuration
of the centres of the mass of molecules A, B. The Euler angles @ = («, £, ¥)
describe the mutual orientation of their molecular axes. We have used a shortened
notation [10], where * D* and. D' represent the Wigner rotation function *Df, and
btm, respectively, with k, [ =0, 2, 4and ( =0, 2,...,k; p& = 0, 2,....1. The
form of the expansion coefficients K*!(R) (in [8] denoted as :ch.v was derived in
the previous work [10]. In contradiction to the usual approach, where :Mw.c. are the
products of multipole moments of interacting molecules, the coefficients K kl(R)

originate in the non-multipole expansion of the pair interaction [10].
The Mayer function f;; for molecules A, B can formally be expanded to the

same general basis of WRF (compare with [6})

exp{—fUa} — 1= ces(R,T)'D*(@)D'(Q) - 1, (8)
kd

where ct ; is the short notation of nea #¢ The values of the coefficients of expansion
to the space of WRF can be ovnm_cmm from the inverse transformation

ea(RT) = [*DH@)d (@) exp(~Uan}dde. (©)

Since the term exp {—BU g } is the Boltzmann weight function, the expansion
coefficients ci ; represent some kind of averaged values

ce (R, T) = ('D*(@)D'(Q)) (10)

of the given basis function ! D¥ D' by the distance R and the temperature T. They
will be therefore called microscopic order parameters.
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I1.2. Finite basis of microscopic order parameters

Analyse now the relation between the expansion coefficients of the pair interac-
tion K¥' eq.  (7), and the expansion coefficients c¢;;.  The function
exp{—Uap(kT)~'} can be expanded to 25 .Hw%_o_. series

exp{~Uap(kT) ™'} = 1 - Uap(kT)"L + (20 [Uap(kT)"Y] = (11)

In the first approximation we can limit ourselves to the linear term of the expansion.
Due to the orthogonality of WRF the substitution of (11) into eq. (9) leads to

ek (R, T) = Sobio — K*!(R)(T)™. (12)

The shape and the value of c;; with given k,l are thus primarily determined by
the corresponding coefficient K*' of the expansion of the pair interaction (7).

Using the multipole expansion of the interaction which is divergent for liquid
crystal molecules, the series (7) is in principle infinite. On the other hand it has
been shown [10] from the convergence of the non-multipole expansion that one can
use a limited part of the expansion (7) for the correct description of the intermolec-
ular forces. The finite part of the infinite orthogonal basis of WRF in which the
translation-orientational properties of the pair interaction can be described is, on
the basis of eq. (12) suitable for the expansion of the Mayer functions. Thus it
can be said without any knowledge of the symmetry properties of the mesophase,
that there is a finite number of microscopic order parameters for any ensemble of
molecules. Which from this set of order parameters are responsible for the for-
mation and which is the mechanism of the formation (at least qualitative) of the
liquid crystal phases will be briefly analysed in the following section.

I1.3. Space dependence and temperature behaviour
of microscopic order parameters

Similarly as the coefficients K*! ﬁ&. the microscopic order parameters
(miOP-s) c;,i(R,T) can be divided into four groups:

i) the angle independent order _umgaoema coo(R,T) Sr_or represents the main
radial part of fap.

ii) the orientational miOP-s, c 1 (* D° = 1), representing the terms which mavmsm
only on the relative orientation of the molecules A and B and on their mu-
tual distance, irrespectively of the space configuration of their centres of mass
described by the angles .

iii) the directional miOP-s, ¢ o(D° = 1), which make it probable to find the
center of the mass of the molecule B in the given direction of the vector R,
irrespectively of the orientation of the molecular frames.
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iv) the combined direction-orientational miOP-s, cg1, k,{ # 0, which correlate

the orientational and the directional ordering.
It is complicated to formulate mathematically the criterion of wEmoomov% of pair
molecular interactions within the Wigner rotation functions [10]. .An explicit cri-
terion of anisotropy has been formulated only recently [11]. In fact this criterion is
defined on the basis of the consequent physical properties (phase diagram) of the
statistical ensemble of the interacting molecules, 1.e. indirectly. Now the behaviour
of the microscopic order parameters in the case of the anisotropic pair interaction
will be analysed.

To understand qualitatively ara mechanism of the phase transitions in terms
of the microscopic order parameters let us analyse the simplest system consisting of
spherical molecules. The pair interaction of the exactly spherical molecules is angle
independent, i.e. all coefficients K*(R) with k # 0 # I are equal to zero. The
temperature dependence of the value of the order parameter cg,0( R, T) in its maxi-
mum c§’3*(T) (minimum of the angle independent part of Usp in dependence on
the intermolecular distance R) is a smooth exponential function. With decreasing
temperature it continuously increases. The continuous increase of cg’3* (T") should,
however, result in the phase transitions to the solid state by some critical value of
temperature. This critical point should be in the region of temperatures where the
function increases steeply. At this stage, for the purposes of the present paper a
qualitative understanding of the phase transition mechanism is satisfactory. We do-
not find it necessary to characterize the critical temperature point more precisely.

Fig. 1. The dependence of the exponential
part of the Mayer function fap =
exp{—(kT)'Uas} in the system with two
local minima Usp = u; = —u; = —uo and
Uap = uz = —10 uo on the temperature.

To comprehend the behaviour of the ensemble consisting of real non-spherical
molecules consider first the idealized pair interaction function with two energy min-
ima u; = —up and uy = —10 ug in dependence on R. The temperature dependence
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of fap in these two minima can be divided three intervals, fig. 1 of the scaled
temperature T = kT'/ug; i) T* < 3;ii) 3 < T* < 10 and iii) T* > 10.

In the point T* = 10, the maximum value of f4p(u2) begins to grow rapidly
with .decreasing temperature. For the function fip(u;1) a comparatively great
increase of the maximum (estimated from the value of the first derivation) begins
at temperatures below the value 7™ = 3.

In the interval of high temperatures T* > 10, the values of the Mayer functions
in both energy minima are small. They asymptotically approach zero as the tem-
perature tends to infinity T => co. From this it can be deduced that this interval
of temperatures is clearly above the possible appearance of critical temperatures
of the phase transition from the isotropic liquid phase. . .

In the interval of intermediate temperatures 3 < T* < 10 the shapes of
fan(u1) and faB(uz) are different. The function fup corresponding to the en-
ergy u; changes still slowly in dependence on T*, although the function f4p of the
energy us steeply increases with decreasing temperature. Hence in this interval
of temperatures the value of the function f4p(uz) can increase above the critical
value necessary for the phase transition. It means that by a slow cooling of the
system below the critical temperature T, (u2) the system will form a phase whose’
structure is determined by the energy minimum u,.

" In the interval of low temperatures T* < 3 the shape of the function f4p(ui)
is similar to the form of faB(u2) in the intermediate temperature interval. It
means that in this interval the function fap(u1) increases above its critical value
necessary for the phase transition. By the slow cooling rate of the system, however,
the possibility of this phase transition depends on the type of the previous phase

-transition at T7,;,(u>2) and on the structural and dynamic properties of the phase
formed m% it.- In our presented case of two energy minima u; and uy the phase
transition caused by the energy minimum u; could not be even visible by slow
cooling of the system. However, if the témperature T* rapidly decreases from
the values T* > 10 up to temperature 7" < T;;(u;) the resulting solid phase
will have a combined structure determined by -both energy minima. In a more
complicated system with a greater number of local energy minima this mechanism
can qualitatively explain the formation of an amorphous structure. .

The analysis of the _Umh:vmnwe:no behaviour of the system with two local minima
can be generalized to an arbitrary system described by the function Usg. In the
introduced expansion (8) only the coefficients ¢; (R, T) depend on temperature.
Let t#mqz and Umin be the maximal and minimal absolute values of the local minima
of the pair molecular interaction U, 5. The temperature interval T* = kT/tmin
can again be divided into three parts:

1) low temperatures T* < 1
i1) intermediate temperatures 1 < T* < (Umaz/tmin)
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iii) high temperatures T* > (¥maz/Umin)- . . .

As will be shown in the next section, the coefficients cx,i (with the mxmovgo:
of co.0) need not have an extreme in dependence on the intermolecular distance
R. Therefore, on the basis of WRF the temperature %ﬁm:&m:oo. of the <w_=o of
the expansion coefficients at the mean intermolecular &mgsnm. m.i_: be no:m_mo.nom.
Then one obtains the dependence of the functions ci (R, T') similar to the previous
simple example with two unequal minima, uj, Ua.

In the interval of high temperatures of condensed phases the value of all non.mum
ck (R, T) is approximately equal, approaching zero. Thus the Mayer mcnwon_o:
changes very slightly in dependence on the angles and has no m.rmnv .3825:5
in dependence on the distance R. At high temperatures the dispersion of mro
function fap is great. The molecules can quite freely move from one configuration
to another. The ensemble of so freely pair-wise connected molecules forms the
structure known as the isotropic liquid.

The width of the intermediate temperature interval T can be different mwa
different molecules and depends on the anisotropy of interaction (i.e. on the &._m.
ference between Umar and Umin). In the case when the interaction is —monmov:y
i.e. Umaz = Umin, the interval of intermediate temperatures does not exist. The
angle independent microscopic order parameter coo has the greatest value of all
the parameters in the whole interval of temperatures (0,00).

With increasing Umaz/Umin the interval AT* = ET(%masf Umin — 1) becomes
broader. In this case, according to the criterion of anisotropy, the <&E.wm of mm,m@_.w_
coefficients K *//(R) are comparable with the angle independent interaction K°°(R)
[10,11]. It means, in analogy with the previous simple nw@:%—m, that $.5 value of
several coefficients ci 1 R) in this temperature interval begins to grow 3?&%.. Some
of them can reach their critical values (i.e. the point of the phase nnwummu.“_o:v at
a higher temperature than the angle independent order parameter oc..cQS mom.m.
As far as the angle dependent order parameters need not have the maximum in
dependence on the distance, the formed phase has not the character of the solid
state. This is according to our opinion a microscopic reason for the appearance of
all intermediate phases in the ensembles of molecules. It also explains the form of

the criterion of pair molecular anisotropy which was recently introduced {11].

As far there are many possible combinations which of the order parameters
grow rapidly, there are many possible structures of the resulting vrmmmm.. Hrm
character of the observed phase transition can also differ from the phase transitions
observed in the usual ensembles where the interval of the intermediate temperatures
does not exist or is very narrow.

Now consider some general properties of the space dependence of the Mayer
functions. .

The value of the function (fap + 1) is always positive at arbitrary thermody-
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namic temperature in any point of the configurational space (R, ®,). Neverthe-
less, the individual base WRF *D* D' can, in dependence on the angles ® and
reach positive as well as negative values [13]. Therefore the expansion coefficients
can be negative or positive in dependence on R and T'. Based on the conception
that the microscopic order parameters are expansion coefficients of the Mayer func-
tion they can reach positive as well as negative values. It is no more surprising that
also the ensemble averaged order parameter (Ps) = (Qn)™! [ Pa[1(fi; + 1)dx¥
can be negative for some nematic liquid crystals [13].

If the “orientational” expansion coefficients K*!(R) are considerably greater
than the rest of the expansion coefficients K*!(R), k # 0 (i.e. the amplitude of
the angle dependent interaction in dependence on the Euler angles @ = (a,B,7) is
comparable with the absolute value of the angle independent interaction K%°(R)),
the macroscopic ensemble of such molecules will form an orientationally ordered
but translationally disordered condensed phase in some interval of temperatures.
A typical example of such a phase are the nematic liquid crystals. The orien-
tational order in nematics is usually described by (Ps} and.(P;) [2-4], which
corresponds to the distance averaged miOP-s a”vco and nwwco. The introduced

limited basis of functions [10] consists of further eleven orientational miOP-s:
00,02 00,20 00,22 00,20 00,02 00,22 0040 00,04 0042 00,24 00,44
o3 3 €03 1 €03 1 €4 1 C,4 1 Cod 1 C4 1 €4 > Co4 > o4 » C04 - All

these corresponding terms depend, apart from the angle § also on the angles. o
and 7. If some of them start to increase steeply in the intermediate temperature
interval they can contribute to the so-called bi-axial ordering [14-17]. From the
preliminary analysis of these order parameters it seems to us that there could exist
at least two types of a bi-axial ordering in liquid crystals. A detailed analysis of the
various properties of biaxiality [14-17] on the basis of microscopic order parameters
will be given in some future paper.

In dependence on R the shape of the individual miOP-s ¢ ; follows the shape of
the corresponding coefficients K*'!. Generally three different types of dependence
of ¢k on R are possible:

i) cx; (negative or positive) has no extreme value in the considered interval
and asymptotically approaches zero with increasing R; (From the preliminary
analysis almost all microscopic order parameters cg,1(R, T) # 0 # k belong to
this type). :

ii) cx; has one or more extremes, but does not change the sign in the whole
interval; (The angle independent order parameter co (R, T) has always one
maximum).

iii) ¢k, has more extremes and changes the sign within the interval of R.

The translational dependence of the Mayer function by fixed values of the
angles ® nad Q is given by the sum of ¢ i(R) multiplied by the values of the corre-
sponding functions * D¥(®).D'(2). The function fag, in dependence on R can have
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a sharp extreme, which means that the molecules are "bonded” (solid state), or the
Mayer function has only a broad extreme typical of the " free” molecules (liquid-like
structure). This property is primarily determined by the angle independent o.aon
parameter cgoR,T). In dependence on the direction of the vector R Ammmnn._vom
by the angles ®), the translational dependence of fap can be different. K—nao.
scopic order parameters are thus able to describe also the directional properties of
distribution. Hence on the basis of microscopic order parameters it is possible to
distinguish between directional and translational properties of distribution. Based
on them we try to give a qualitatively new view on smectic and columnar liquid
crystals. o .

In the ensemble which forms the smectic liquid crystal phase it is most probable
to find the molecule B somewhere in the plane perpendicular to the long axis of the
noa-mr.o molecule A. The probability to find B in any other direction is considerably
lower. In this plane the interaction energy Uap is for rod-like molecules consider-
ably greater than along the rod axis, which is schematically shown in fig. 2. (This
is in contradiction to the opinion that the interaction is greater if the molecules
interact via their chain ends [18]).

]
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Fig. 2. The distance dependence of the  Asshown in various direction (angle 9) the

interaction energy (a) and of the proba- distribution can have at the same tempera-
bility distribution (b) of two parallel rod- ture a “liquid-like” and a “solid-like” char-
like molecules in two space configurations acter.

§ = 0° (1) and ¥ =907 (2).

The distance dependence of f4p in this plane determines whether the lamel-
lae have isotropic liquid-like or quasi-periodic two-dimensional structures. If the
coefficients describing the direction anisotropy of the Mayer function have no signif-
icant extreme in dependence on the distance R, the lamellae could have liquid-like
structure (SmA). On the other hand if there are some distinctive maxima on the
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distance dependence of f4pg in the plane, the lamellae could have a two-dimensional
structure (SmB). As far as the ensemble is in the intermediate temperature region
relatively great fluctuations in fap hinder the formation of lamellar clusters with

defined lateral dimensions: Only the thickness of all clusters is the same, and is

equal to the conformationally averaged length of rod-like molecules. The ensem-
ble of such lamellar clusters forms then the one-dimensional macroscopic structure
typical for smectic liquid crystals.

A similar situation can be observed in columnar liquid crystals. For the disc-
-like molecules it is most probable to find the molecule B somewhere along the disc
axis of the molecule A. The anisotropy of the pair distribution causes the formation
of columnary shaped clusters of undefined length. The clusters can have a liquid-
-like nonperiodic or quasi-periodic one-dimensional structure which is determined
by the distance dependence of f4p in this direction. In dependence on the column’s
transection which is connected with the orientational ordering, the ensemble of
such clusters can form different types of macroscopic periodic structures in two
dimensions. .

The partial translational ordering observed in the smectic and columnar liquid
crystals is thus the result of the anisotropy in the directional characteristics of
the microscopic Mayer function. Microscopic order parameters offer a physical
insight into the confused understanding of the partial translational ordering of
liquid crystals.

IIT. CONCLUSIONS

The defined microscopic order parameters offer a unified view on the direc-
tional, orientational and translational microscopic structure of condensed phases.
(Especially useful seems to be the distinguishing between the directional and the
translational ordering, which so far has not been w@_.mgamm.v They offer a new
qualitative explanation of the appearance of intermediate phases in the phase dia-
grams of the ensembles of real molecules.

The anisotropy of the pair interaction and the appearance of the system in the
interval of intermediate temperature below the critical T4 are the inevitable and
sufficient conditions for the formation of partially ordered condensed phases. The
temperature behaviour of microscopic order parameters seems to us to be able to
explain the pretransitional effects in mesophases (continuous growth of miOP-s) as
well as the great variety of different types of phase transitions in liquid crystals.

In the present paper we have analysed only the general space and temperature
properties of the miOP-s ¢ ;. For a more detailed analysis of the ordering in liquid

crystals and of the character of phase transitions the form and the temperature

dependence of the pair distribution function f4p for concrete molecules should be
analysed. -
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NAPAMETPBI MEKPOCKOIINYECKOTO NOPANIKA B X)KHAKHX KPHCTAJLIIAX

IIpoBopsaTca napamerpu MHKPOCKONHRIECKOI0 NOPAAKA NaPHOI'O MONEKYIAPHOLO Bla~
HMOlEHCTBHA. Onpepenens xoedPpruaenTrr bynxnen Makepa fi.; B Ha6ope POTAHOHHBIX
$ynxuuit Baruepa. Ilosepenne MHKPOCKOMAYECKHX MAPAMETPOB HOPARKA MOJBONAET Ha-
6monaTe HOBoe KaIecTBO B $a3oBRIX mepexopax npepnepexoRunlx epdexrax GasoBrix
HEPEXONOB B KOH{eHCApoBaHOH Pase. [lapameTpnr HOPAQXa NMO3BONAIOT MONYIHTH €IHHBIM
-06paasoM caeienns o TPRHCIANMOHHOR; HANPABIEHHOH H OPHEHTANEONHON MHEKDOCEONH-
qeckoll cTpykType das. Ipasogarca APEBAPRTENLHNE aHANAS PASHBIX ACIHEKTOB OpHEH-
TaHOHHOH MHKDPOCKONHEYECKOR cTpyxTypsl. Kpome BoamoxHocTH PadfeNeHEs Hamnpas-
JAIOLUEro ¥ THCTO TPAHCTANMOHHOTO MAKPOCKONAIECKAX NOPANKOB, PaboTa TakKe MO3BO-
AAeT NONYIATH CBEfleHEA O NPHHUMNE TPaHCIANAOHHOR CTPYKTYPHl B XAZKHX KpHCTal-
nax.
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