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ON ONE MODEL OF CHEMICAL KINETICSY
ADAMEG, L.,?) Brno

The present work deals with the properties of a mathematical model of the
chemical kinetics of gases, especially with the problem of model adequacy. It is
shown that almost all the qualitative features of the model can be derived from
model equations without having to solve these equations explicitly. Included in
the considerations are possible model applications in computing the equilibrium
composition of a cheinical system.

) L INTRODUCTION

The work is, on the one hand, devoted to the analysis of one out of many
mathematical models of chemical kinetics (as used in [1]) for the modelling of
time-dependent Processes taking place in low-temperature plasma resulting from
the action of the electric arc on SF¢ (sulphur hexafluoride), on the other hand
it points to an interesting possible application of this model in computing the
equilibrium composition of a chemical system.

The first part is understood as an attempt at filling the gap between expe-
rimental results, i.e. the measurement of the values of quantities characterizing
a specific physical model of a system, and the “computer-aided” solution of the
model adopted.

The justification of examining the qualitative properties of a model follows, for
example, from the fact that a characteristic feature of contemporary physics and
chemistry is the interest in non-linear processes, for which it is, of course, difficult to
establish whether the numerical results obtained by solving our model are correct
or not. The usual way of checking this is to have a large number of computations.
It is considerably more convincing to derive the fundamental properties of a model
than to solve it for a specific (and thus finite) set of input data - parameters.

1) Contribution presented at the 8th Symposium on Elementary Processes and Che-
mical Reactions in Low Temperature Plasma, STARA rmm2>_ May 28-June 1, 1990
) USPE, Bozetéchova 2, 612 66 BRNO, CSFR
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Our aim will be: a) to show that at a suitable level the adopted model is
adequate, i.e. it is not in contradiction with the intuitively expected behaviour of
a real phenomenon and, moreover, it can, at least in principle, be solved by means
of numerical mathematics; b) to point to the interesting possibility of applying this
model to the computation of equilibrium composition.

2. DESCRIPTION OF THE ADOPTED MODEL
OF CHEMICAL KINETICS

Let there be a chemical system S with the components Si,.-.,8n, the con-
centration of which will be denoted Y1,---,¥n- Each component S; is a linear
combination of the base elements Py, ..., Py, where the base element is understood
to be a substance which in system S does not decompose into simple substances.
(Let it be added that the base elements F; need not of necessity occur among the
elements S;.) The coefficients of these linear combinations, usually expressed by
integers, form the lines of formula matrix U/.

Assuming that taking place in S are m reactions described by stoichiometric
equations .

Pl
€1iS1+ ...+ cajSp S+ ...+ CnjSn
d; (2.1)
n...?amu. €{0,1,2,..}, i= L.,n, j=1,..,m,
where ¢;;, omu. is the stoichiometric coefficient of the ith component in the jth reac-
tion, and r;,d; are non-negative functions of temperature T' called rate constants,
and assuming further that every reaction (2.1) leads to a time variation in the
concentration of the ith component

i n n ,
U = (e =) |=ri(D) [T 0¥ + &) [ i | =: ai6(T, ¥),
k=1 k=1 AMMV
i=1...,n,

the resultant time variation in the system composition is the sum of all variations
and it can be written in the form

y= \»QA..NJ. Qv, Amwv

where A = [ai;] is the stoichiometric matrix of the system.
Assuming further that the temperature of Sis a known time function T = T(t)
and that the rate constants are of Arrhenius’ form

-aexp(—b/T), a,b> 0, 24)

and neglecting the effect of the other phenomena, let us pose the question whether
this model meets any of the requirements of adequancy.
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~ 3 DISCUSSION OF PROBLEMS OF MODEL ADEQUACY

In the following we shall deal with these problems of model adequacy (2.3):

a) the existence and uniqueness of solution for any time ¢ 2 tg. There is no doubt
that a model is not admissible whose solution expressing the time composition
of the system would only be defined on a bounded time interval. Similarly
it is not suitable (from the viewpoint of possible numerical solution) that for
a given initial composition of the system S there should be more than one
solution.

b) the existence of non-negative solutions, i.e. if the solution of the model (vector
of molar concentration) y is at the time ¢, non-negative, it is non-negative at
any time ¢ > o in which it is defined.

¢) the existence of stationary solutions of the model in the case of constant tem-
perature, i.e. the existence of solutions corresponding to steady or equilibrium
states.

The adopted model (2.3) is formed by a system of ordinary differential equa-
tions solved with Tespect to the derivative whose right-hand side is continous in
all the variables and has partial derivatives with respect to the variables y. Hence
([2]) the existence and uniqueness of the solution of the model on a certain interval
(to,to +€),¢ > 0, and this solution is a continuous function of the initial system
composition.

To solve the problem of the existence of non-negative solutions, let us write
(2.2) in the form

¥ = —laij|Pj(t, y) v + |ai;|Q; (¢, y)
i=1,...,n; j= 1,...,m,

where P;j, Q;; are monoms of y such that if y > 0, then also Pij >0, Qi >0.
If at time {, 2 tg the concentration y; of a component S; is zero, its time
derivative will be

¥i(t1) = laij]Qij(t1, y(t1)) > 0,

and thus the given component of the vector field (2.3) cannot point out of the
region of non-negative values.

If we start from the physically reasonable assumption of non-negativeness of
the vector of initial concentrations, the concentration vector components will be
non-negative for any time ¢ 2 to at which the solution is defined.

It remains to be added that this result can be enhanced considerably if all the
reactions in the system S are assumed to be reversible and all constants a in (2.4)
are positive. Under this conditions, depending on the stoichiometric matrix, the
components y; of the vector of concentrations y fall into three classes:
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a) constantly positive components, b) constantly positive components with the
exception of the initial time ¢,, c) identically zero components.

The assumption of the reversibility of all reactions is not at all unnatural, it
corresponds to the dynamic understanding of the chemical equilibrium as a state
of a system when the rates of forward and back reactions become equal. Identically
Zero components are easy to eliminate from (2.3).

In the following, the term “solution” will always refer to non-negative solutions
only - it is only these that carry any physical meaning.

While the local existence of solution (2.3) was the trivial consequence of the
Picard-Lindelof theorem, the global existence is not exactly so selfevident. For its
proof it is of advantage to use the formula matrix U = [ui;]. From the law of
conservation of mass and charge it follows that this matrix forms d time-invariant
functionally independent first integrals of (2.3) in the form

ﬁu.:}u—u...u—..ﬂn.:@:“@-. n“_..LN A“wuv

For the sake of simplicity, let us first assume that the system does not contain
any ions. Then the number of base components d > 1 and there is no electron
among the base components. This, of course, means that all coefficients u;; can be
chosen such that

a) u;; €{0,1,2,...}, i=1,...,d; j=1,...,n

b) rank (U) =d

c) Muwuw.:&Vo ji=1,...,n, .
whence it follows directly that the components y; of the solution y of (2.3) are
bounded and thus the solution y is bounded in the norm and hence it exists at any
time t > ¢,.

If S contains any ions, then an electron can be choosen as the base component
FPa so that the first d-1 lines of formula matrix U are formed by non-negative inte-
gers. Hence it is easy to find that d-1 components are bounded i.e. the remaining
component must also be bounded.

In the conclusion of this Chapter let us suggest a proof of the existence of a
steady state of system S in the case of constant temperature, i.e. a proof of the
existence of a stationary solution of the system

y=AG(y), Uy0)=t¢, (3:2)

where the initial condition specifies from what substances the system S was formed
during the preceding development (we put to:=0).

The trajectories of (3.2) lie in the intersection of subspaces (3.1) with the
positive cone of the phase space of concentrations Q : {0,00) x {0, 00) x ... x {0, 00).
The set g determined in this way is convex and compact. Let us consider the
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Fig. 1. Effect of mapping T on phase space.

‘mapping (phase shift) TT1): Qo — Qp of this set onto itself, which to any point
¥° € Q, will assign a point y(1) € Qq, where y(t) is such a solution of (3.2) that
¥(0) = y°; see Figure 1.

Since T [1] is continuous, there must necessarily be (see [3] T.2.2.4) at least
one fixed point z; € Q of the mapping T(1], i.e. such a point that z; = T[1)(z,).
This means that for the solution y starting at time to = 0 from point z; it holds
that

W0) = =y = T[1)(z,) = (1),

or, in other words, that this solution is periodic with the smallest period not ex-
ceeding 1. Similarly, we can consider the mapping 7" [2] and show thus the existence
of point =4, from which the solution with a period not exceeding w starts. From
the group property of mapping T it follows that

zy=T E (z2) =T E (T E (z2))=T m + m (22) = T'[1] (22),

le. z; is also a fixed point of T[1]. In this way a sequence of fixed points
{71, 22, 24, 24, ...} of the mapping T [1] can be obtained from which a subsequence
convergent to the point z4 € Qo can be choosen. Since the solution starting from
point zya is periodic with the smallest period less than or equal to 27", it can be
seen that starting from point o the required stationary solution is y(t) = zo.

A detailed analysis which, however, is beyond the scope of this work, can be
used to show that among the possible steady states there is only one state which
is globally asymptotically stable on Qo (in the Lyapunov sense). This state can be
identified with the state of thermodynamic equilibrium.
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4. USING THE MODEL OF CHEMICAL KINETICS
FOR THE COMPUTATION OF EQUILIBRIUM
COMPOSITION OF A CHEMICAL SYSTEM

The above knowledge can also be made use of in the computation of an equi-
librium composition of homogenous gaseous systems, which is a task equivalent to
finding the only globally asymptotically stable solution y* of system (3.2). Then
the following procedure may be choosen for the computations:

a) solving (2.3) at the required temperature T = Ty with an arbitrary initial con-
dition satisfying the element-abundance equations

QQA?V = & AA:

over a “suffieciently long” time interval (to,t1), with the value ¢; being obtained
as soon as the solution with an accuracy chosen in advance behaves like a constant
with respect to time ¢. Now we can either write directly y* := y(ty), or

b) regard y(t,) as the first approximation of y*. The exact value of y* is then
obtained by solving the system of nonlinear algebraic equations

AG(Ty,y) = 0 (4.2)

for example by the Newton-Raphson iteration method with first approximation
y(t1).

5. DISCUSSION OF RESULTS

The above mentioned method was used to compute equilibrium composition
for the SFg system with the components SF, Sy, F,, §, S+, F, F~, e~ at a tem-
perature of 10 000 K. The computations were carried out at a constant volume
corresponding to the initial pressure of 1 MPa. Rate constants were obtained from

4]).

“ The results were compared with the equilibrium composition of this system
as computed by the method of minimizing the Gibbs function (determined on the
basis of [5]). It turned out that to obtain an agreement in the order of per cent it
was not necessary in this case to solve the system (4.2). A typical result can be
found in the Table 1.
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Table 1
The composition of the SF¢ system at temperature 10 000 K

2 v° v y°
SF 0.1 4.3282—4 4.3288—4
5, 0.1 8.0188—5 8.0389—5
Fs 0.4 3.9617—5 3.9517—5
S 0.4 8.8790~1 8.8746—1
s+ 0.3 1.1151-1 1.1194—1
F 5.0 5.998140 5.99824-0
F~ 0.1 1.3235-3 1.3243-3
e~ 0.2 1.1016—1 1.1062—1

¥° - the vector of randomly chosen initial composition satisfying element-abundance equa-
tions (4.1), y* - the equilibrium composition determined as given in a) of the method pre-
sented, ¥ - the equilibrium composition as determined on the basis of [5] by the method
of minimizing the Gibbs function, a + b denotes ax 10%%, The composition is given in
moles per one mole of source compound.
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