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A CONTRIBUTION TO THE ABR THEORY
OF ION COLLECTION
BY THE SPHERICAL PROBE"Y

FERDINAND, J.,?) Plzeii

An attempt to solve Poisson’s equation as part of ABR theory is carried
out. In the original paper of Allen, Boyd and Reynolds there is no men-
tion of the solution method. From results of the present paper it is evident that
Poisson’s equation was in the original paper linearized. Furthermore Poisson’s
equation was probably solved by the method of two successive integrations, i.e.
by a method which is unstable. In the present paper integration was carried
out by the integral identities method and without linearizing assumptions. We
obtained results, which from the physical point of view are new, as pointed out
in the present paper.

I. INTRODUCTION

The ABR theory {1] deals with ion collection by the spherical probe. The
iean free path of the ions is assumed to be large with respect to the probe radius
\ > a) and the electron temperature is assumed to be much higher than the
n temperature (T, > T;). These assumptions are in a low pressure discharge
» < 10% Pa) well satisfied.

The ABR theory starts from previous theories, namely that of Bohm , Bur-
op, Massey [2] and Langmuir and Mott-Smith [3].

The ABR theory is based on the fact the probe is so negative that only few
ectrons reach the probe surface. Further, the Maxwellian distribution of electron
slocities is assumed. Under this condition we can take the following formula for
i electron density n. in the neighbourhood of the probe ‘

ne = neoexp(—eV/kT,), 1)
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%rozw neo is the electron density far from the probe, e is the electron charge, v
1s the potential and k is Boltzmann’s constant. For the ion collection the »rMoQ
Ew_am the following assumption. If the energy of the ion is large with respect to
the initial value of the ion energy, then the ion velocity is (—2eV/m;)!/? and'it has
a radial component only. The ion density n; in the probe neighbourhood is thep
given as
= Lol y2y-11
n: = Li(e(~2eV/T) %) =, ()

where .~.. is the ion current. The equation (2) holds for such values of r for wich the
vo_xw.ssu._ V satisfies the inequality |V| 3> V4, where V; is the potential expressing
the initial ion energy eVj.

Under these conditions we can write Poisson’s equation for the distribution of
the potential in the probe neighbourhood

1d f,dvY_ 1
S \T T IWN?..I:LP (3)

The theory further assumes that the ions are charged with one elementary charge
only. Introducing the dimensionless potential as

n = eV/kT, (4)
and the dimensionless distance
E=r/), _ (5)
where
kT, :
A= 0¥’ Amv

Sooaw

is U.mv%m,m length, we can with respect to the equations (1), (2) rewrite the equation
(3) in the form

d dn I 1
where |

I = ?ﬁm:mw AWV 5. .. ®

m;

The equation (7) is a nonlinear differential equation of the second order.

322

II. SOLUTION OF THE EQUATION FOR THE POTENTIAL

Now we are able to solve the equation (7). However, simultaneously difficulties
arise. First, it is evident that the problem is a boundary problem. So we must set
two boundary conditions. The natural choice of the boundary conditions is

E=& n=1, £ o000 =0, 9

i.e. we put the first boundary condition on the probe surface and the second in
infinity. In this manner Laframboise , for exemple, chooses boundary conditions
[4]. However, in the ABR. theory no comments with respect to boundary conditions
are present. Though from consequences it is evident that the first boundary con-
dition is put at £=0, not at £=¢,. This is unnatural. But without such a choice of
the first boundary condition the voltampere characteristics of the current cannot
be obtained.

Secondly by the authors perform the derivative on the left-hand side of the
equation (7) so that this equation is transformed into

1/242 d?p | 2dg\ _ I

176" (oxp(om) + 2 + 290 = 1 (10
And this equation is then solved numerically. But this manner introduces an in-
stability to the solution due to the presence of the first derivative, which must
be approximated by a central difference. For this reason it is better to leave the
left-hand side of the equation (7) in the original form and to usé an adequate inte-
gration method. Such an integration method is, for example, the integral identities
method.

Thirdly the greatest problem is in the nonlinearity of the equation. The au-
thors did not comment upon the method used to solve the equation. But all
circumstances indicate that the right-hand side was linearized.

Then the first boundary condition was put at zero; the value of the potential
was chosen very large, the 7(0) value cannot be less than 100, otherwise it would
be imposible to obtain such values of the potential as discussed in paper [1]). The
second boundary condition n=0 was put at a suitable distance from the probe (so
that the location of the boundary condition is without effect on the solution).

Thus we tried to repeat this scheme in the first step. Our boundary conditions
were chosen as

£€=0 1=1000, £ —o00 n=0. (11)

The equation (7) with a linearized right-hand side was integrated by the integral
identities method. The results giving a potential distribution are given in Fig. 1.
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Fig. 1 Distribution of the potential.

ig. 1 . Fig. 2 Voltampere characteristics of
Linearized version.

the probe. Linearized version.

The evaluation was carried out for the following values of I; /Ix: 1,5, 10, 20, 30
40, m.o“ 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, moo..m,o_H
v—.dﬁ@ we present the cases I;/1: 1, 20, 40, 80, 120, 160, 200 only. If we compare
Fig. 1 and Fig. 4 in paper [1], we can state that our results are most probably
(the authors of the original paper gave no numerical values) identical. After that
we found the voltampere characteristics of the ion current for the following values
of a/X: 1, 2, 4, 6, 8. Our results are presented in Fig. 2. Comparing Fig. 2 and
Fig. 5 from paper (1] we can state a practical identity. But, moreover, we state
that the form of the characteristics with a/\ < 4 is different than the form of the
remaining characteristics. The characteristics with a/) < 4 are not purely concave;
at the beginning they are convex. The concavity of the remaining characteristics
is identical with the paper [1], but the characteristics are almost linear and have
no tendency to saturation.

In the second step we left the right-hand side of the equation (7) in nonlinear
woﬂb. Integration was carried out by the integral identities method, nonlinear-
ity was iterated by Newton’s method. As an initial solution, the solution of the

equation
d dy
2 (%) =0 (12)
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Fig. 4 Typical shape of the voltampere
characteristic of the probe. Nonlinear
version, equidistant method.

Fig. 3 Distribution of the potential.
Nonlinear version, equidistant method.

was chosen. Boundary conditions were in the form of (11). The results of the
evaluation are strikingly different from the linearized version. The solution for the
potential is presented in Fig. 3. The evaluation was carried out for the following
values of I;/Ix: 1, 5, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200. Here are
presented the results for I;/Ix: 1, 20, 40, 80, 100, 120, 140, 160, 180, 200. In the
solution the influence of the nonlinearity exp(-n) is evident by a drastic decrease
of the potential in the nearest neighbourhood of the probe. The problem is rather
complicated and our integration method in the equidistant version is not able to
carry out the evaluation of the potential with the accuracy, we should wish. We
were limited by the stack memory capacity of the used computer. The nonequidis-
tatnt method up to date has no satisfactory results. It seems, however, that the
drop due to the exponential term is at the beginning very steep. Then it is balanced
in some region by the second term with a square root. This effect causes a transient
increase of the potential, which increases with increasing ratio I;/Ix. After that
the potential falls to zero. A further surprising effect is that the potential has a
greater range than it has in the linearized case. Integration in the nonlinear version

cannot be stopped until 7=1500.
The accuracy of integration depends on the value of the integration step. The
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experience with integration so far has been such that the integration step would
be very small in the neighbourhood of zero. At greater distances we could choose
a disproportionally larger step. Using this process we could decrease the number
of integration step and it seems that the accuracy of the solution would be better.
It also seems that the number of integration steps is not satisfactory with respect
to the influence of the zero point choice on the solution. But with respect to the
limit discussed above we cannot increase the number of the integration steps when
using the equidistant method. By the reaction of the form of the solution to the
stopping point choice and on the value of the integration step, we can explain the
form of the voltampere characteristics of the ion current presented in Fig. 4. These
characteristic are convex. So it seems to be necessary to increase the accuracy of
the solution of the equation (7).

III. CONCLUSION

The results of Allen, Boyd and Reynolds are obtained most probably by
the fact of linearization of the right-hand side of the equation (7). So it seems to
be necessary to solve the original equation, i.e. the equation without linearization
of the right-hand side. This was the attempt of the present paper. The most
important results are as follows.

1) The range of the probe potential is much greater than in the original ABR
theory. So the plasma will be more affected by the probe presence.

*2) The potential is not a purely monotonous (i.e. decreasing) function of the
distance. Both nonlinearities are at the beginning contradictory. This fact causes
a transient increase of the potential.

3) The values of the potential in the nearest neighbourhood of the probe are
problematic and in the present state of investigation cannot be evaluated.

For all these reasons we shall further insist on nonequidistant integration meth-
ods which could be capable to evaluate the potential more accurately than the
equidistant ones. Nevertheless the most important objection against the ABR
theory, i.e. the unnatural choice of the boundary conditions, remains.
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K TEOPHHU ABP CBOPA HOHOB COEPHIECKHUM SJIEKTPOAOM

B paSore mpmBeneno pewenme ypasHewns [loaccoma B pamxax Mnovnu _”.MHM—_..MM
Bonna-Pefinongca, x0Topoe B HX OPETEHANLHOK %uao.am He IIOKasaHo. =oum No“%.oﬁw o
i a B OPETEHAND ) -
reT 9To ypasuenme [loaccona B
NpegIoXKEeHHOE PaboTH Chefy: 3 g
Y eM METOfl2 NOCTENeHHOTo
ATHO PEUICHO C PEMEeHEeHH
eapunEpoBaio B 6olee Bepo. . e
ol paboTe HHTe-
He cTabEIHBE MeToX. B mpmBegenn
TPHpPOBaHESA, ITO NpefCTaBIdeT i mTe-
_.M:vouwwum NPOBONHAOCH METOROM HMHTErPANBHEIX TOXKAECTB, KOTOPHH He HYXJ
B TAHeapE3anuu. B pa6oTe noxasans HoBhe PHIHIECKHE PE3YALTATH.
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