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APPLICATION OF NUMERICAL HSH.HmOUm
FOR COMPUTATION OF THE ABEL INTEGRAL
EQUATION TO SPECTROSCOPIC DATAY

SEMBER, V., Praha

.> comparison of six numerical methods for computing the Abel transfor-
mation is presented. The dependence of accuracy of each method on the number
of data points and experimental errors for two typical types of radial intensity
distribution is shown. An application of suitable methods to the computation
of rotational temperature from an OH molecule vibrational band is discussed.

L INTRODUCTION

. In plasma spectroscopy, the line of sight of the external intensity I(y) of an
optically thin cylindrical plasma is related to the radial intensity i(r) through the
Abel integral equation and its inverse {1]

I(g) =2 \ 04 (1)

T.u - .%%\u

I
i(r) = m.'ﬁwa% @

where I(y)’ is the first derivative of the side-on intensity with respect to the lateral
coordinate y, and R is the over-all radius of the plasma column.

To obtain the radial distribution i(r) from a set of experimantal values of
I(y;) (i = 1,...,N), one must either solve the integral equation (1) or evaluate
Eq. (2). The direct computation of the Eq. (2) involves numerical differentiation
which results in a considerable amplification of the experimental errors. To avoid
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this numerical difficulty, a large number of techniques have been devised. Con-
ventional methods may be divided into two classes: Numerical techniques and
Analytical approximation methods.

In numerical techniques (for example [2]), either the side-on intensity or the
radial intensity is assumed to have a variation given by a particular law over each
interval ;. The recurrence formula for i(r) is used, the computation starts at the
outer radius. N umerical techniques are very simple and quick, howerer, numerically
unstable with respect to the error propagation.

Analytical approximation methods are based either on approximation or on
interpolation I(y;) with some orthogonal series expansions with least-square fitting
or with some spline functions, then i(r) is obtained from Eq. (2) analytically or
numerically [1,3,4]. To avoid differentiation entirely a derivative-free formula was
derived from Eq. (2) [5,6], which is less sensitive to the experimental errors. The
interpolation techniques require, however, a prior smothing of experimental data,
the approximation Baeromm,. on the other hand, are usually rather complicated and
involve some numerical difficulties.

Recently several new numerical methods have been developed which seem to
be numerically stable and have no disadvantages of conventional ones {7-9]. Some
of these methods are devised on the assumption that a high-speed computer is
available, and a new explicit solution of Eq. (1) is derived [9], which enables very
accurate numerical computation for a very wide range of side-on intensity functions.
In other cases emphasis is put on the capability of handling large data sets [10].

II. NUMERICAL METHODS

1. Frie’s method
Radial intensity is assumed to be replaced, over a small interval y; again, by a

second-degree interpolation formula, which is substituted into Eq. (1). The simple
recursive relation for the radial intensitz is derived [1, 2].

2. ‘Cubic spline method

Experimental data are interpolated by means of cubic spline polynomials, the
analytical solution of Eq. (2), in each interval 3, is obtained [3]. A cubic spline
algorithm was taken from [10].
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3. Cremers’ method

The method is based on dividing the data I(y) into a number of segments,

.25: a least-squares polynominal is fitted to each segment so that Eq. (2) can b
integrated exactly. Since the fitted curve must have zero slope at the centre .
polynomial in z? is used for the data subset nearest to y = 0 {1]. In our case mvw
number of segments was being chosen up to five on condition that the BF:.SEM
of data points in each segment was five. The least-squares polynomial of fourth
degree was then fitted to each segment plus three points from each of the adjacent
segments, with the exception of the extreme segments. .

4. The Vicharelli and Lapatovich method.

. The m:.mun:&o of this method is taken from deconvolution techniques {7]. Fol-
lowing Vicharelli and Lapatovich we define the mean radial intensity.

i(y) = I(y)/2z0(y),

where zo(y) = (R? — y?)'/2, so that Eq. (1) can be rearranged as

_ R
Hy) = \ i(r)g(r, y)dr, 3)

where
9(r,y) =0 0<
otry) =r/ ("~ 9) "2w)]  y<r<R

The iterative algorithm for computing i(r) is used. The mean values of the oxvon..

imental data I(y;) are used as the first approximation. An improved estimate is
calculated from

i =451 (ri) + [T (%) /220 (1) — 151 ()],

where #;_;(r;) by Eq. 3 using the (j — 1) the estimate of i(r).
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5. The Tatum and Jaworski method.
The explicit solution of Eq. (1) has been offered in paper [8}:

i(o) = 1 d (1- m.uv_\w \n\u I Tncmu 0 + ¢’ sin” §) _\N_ sin 6d6
mRe de 0

where @ is a dummy variable, p = r/R. For evaluating the quantity I(arg) in Eq. (4)
the fast Fourier transformation was applied to express I(y) as a cosine expansion.
The integration with respect to 6 was being performed with Simpson’s rule by
doubling the number of intervals until the difference between the current and the
previous result was below 10~8. The quantity dP(g)/de was being computed by
means of the same numerical formula as in {8].

6. The Kalal and Nugent method.

The cosine expansion of I(y) by means of a fast Fourier transformation is used.
The Eq. (2) is then expressed as

i(r) = s.\wm.MU kapgr(r/R) | (5)

k=1

where a; are appopriate Fourier coefficients and gx(g) are given by integrals which
tend to the zero-order Bessel function of the first kind Jo(kIlg) when k become very
large. The Abel inversion (5) is then calculated directly from the Fourier coefficients
and the basis functions gi(g): To accelerate the algorithm, the functions gi(0) were
precalculated for a given number of data points. The accuracy of this method is
reliable, however, only on condition that the derivate vanishes near the outer radius

(9]
IIl. NUMERICAL EXPERIMENT

Two numerical experiments were carried out. In the first experiment the above
mentioned six numerical methods were tested for a different number of data points
using two typical test functions. The bell-type function is given by (see Fig. 1)

i(ry=1-2r" 0<r<1/2 ©)
i(r) = 2(1 - r)? 1/2<r< 1.
The off-axis peak-type function is given by (see Fig.2)
i(r) = —47.7(1 — r?)7 + 43.5(1 = r*)° + 5.5(1 — r*)* — 0.9(1 — o L ()]
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Fig. 1. Bell test function. X-axis label: Fig. 2. Peak off-axis test function. X-axis
T, Y. label: r,y.
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Fig. 3. A part of A2T — X211 OH(0,0) vibrational band profile. X-axis label: Wavelenght
[nm] Y-axis label: relative intensity.

First the exactly evaluated values of test functions I(y) were applied, then
the uniform random noise data were added. For the Frie, Vicharelli and cubic
spline methods at first a simple smoothing algorithm was applied. The algorithm
used the mean of the data points within a specified box size as the value at the
midpoint of the box. A smoothing effect in Tatum’s and Kalal’s methods was
obtained using only a few first Fourier coefficients. Two Fourier coefficients for the
bell-type function and three for the off-axis peak-type function proved to be the
best choice.

In the second numerical experiment suitable numerical methods were applid to
the computation of a rotational temperature radial distribution from a theoretical
vibrational band profile of the OH molecule transition A2Y — X2[1(0,0). The
theoretical band shape from 306.2 nm to 306.8 nm was calculated using the line
parameters published by Goldman and Gillis [I1]. The rotational line shape
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Table la

Standard deviations (SD) for different data points and different noise level. S is the SD
of normally distributed random noise. a) bell function

noise intervals Frie spline Cremers Vicharelli Kalal Tatum
10 .003243 .006356 .002242 .00756 .003319 .00231

20 .000808 .002619 .000923 .002284 .000616  .000512

S=0 30 .000359 .00147 000787 001112 000173  .000148

40 .000202 .000966 .000642 000867 000107  .000088

50 .00013 .000696 .000574 .00086 000067 .000051

10 .01696 .017268 .013964 019267 031244  .029869

S = 0.01 20 .027098 .022443 .01788 .023332 027788  .024879

Cﬁv 30 .033945 .027535 .022347 .020342 .028439  .025321

40 .040729 .033379 .021081 02223 - 030132 .027346

50 .046509 .038038 .017008 .022176 031629 .029594

10 077713 .062726 067749 .058843 030859 .030308

S = 0.05 20 134729 .107873 .088858 .096429 032749  .031221

Amﬁv 30 .169769 .13665 112139 081459 .030522  .026699

40 .203642 .166203 .105026 .085871 .027541 .023388

50 232545 .189734 .085217 .085259 .032732  .032642

was calculated using the formula (for example [12])

a— (26X W)?

9(AX) = — (o — 2)(260/W)?

were « is an arbitrary parameter chosen to equal 4 and W is the width at half
maximum chosen to equal 0.04 nm [12] (which gives the band profile similar to
that obtained by our PDA detector using monochromator HR 320 and the grating
2400 line s/nm, see Fig. 3).

For modelling the side-on spectra the simple forward Abel transformation al-
gorithm was used. The algorithm is based on the same as Nestor and Olsen
used for inverse transformation [1]. The bell function (6) was chosen for the ra-
dial distribution of temperature and densitz of OH molecules. The temperature
distribution was transformed into the interval given by the temperature of 3000 K
at the axis and 300 K at the outher radius, respectively. Experimental error was
simulated adding a 1% maximum randon noise to side-on spectra. It means that
the signal-to-noise ratio increases towards the outer radius.

Rotational temperatures corresponding to the band profiles obtained from a
Abel transformation were determined using standard least squares procedure and
compared with those from the original radial distribution.

289



Table 1b

Standard deviations (SD) for different data points and different noise level. S is the Sp
of normally distributed random noise. b) peak off-axis function

noise intervals Frie spline Cremers Vicharelli Kalal Tatum
10 04279 .04528 .13867 .06861 .00807 .00627
20 .01138 .00926 .00855 .03126 .00119 .00121
S=0 30 .00557 .00616 .00458 .01903 .00119 .00119
40 00354 .00478 .00296 .01319 .00118 .00118
50 .00262 .0038 .00233 .00986 00117 .00117
10 12972 .06248 .11373 .1458 .08495 05933
5 =10.031 20 .09554 .06725 .05918 .09845 .0836 .0808
(1%) 30 11217 .08124  .06819 .09073 .08405 .08264
40 .13336  .10067 .06513 .09912 07728  .0728
50 15176  .1159 .05276 .11274 .07912 07317
10 301 15047 .15012 28706 .21846 .25967
S5 =0.155 20 44577 32849 .2784 37734 .11564 112
(5%) 30 .55636 .41806 .34585 37165 .1003 10029
40 .66485 51127 .32476 42762 11621 10271
50 75758 .58501 .26372 .45812 12535 .09752

IV. DISCUSSION-CONCLUSION

The aim of this paper is to compare some Abel transformation numerical
methods and to discuss the choice of a siutable method applicable to a large amount
of spectral data. The comparison is given assuming that no previous treatment of
raw spectral data was made.

From the results summarized in Table 1 we can see that Kalal’s and Tatum’s
methods give a good accuracy even when no previous smoothing is applied. More-
over, these methods involve the smoothing effect, which rapidly reduces the com-
putational time, especially in the case of Kalal’s method.

In the second numerical experiment only .m:mmommsaw quick methods were tested
(Frie,Vicharelli,Kalal ). The speed of Vicharelli’s algorithm depens on the
number of iterations. In our case five iterations proved to be sufficient to reach
adequate accuracy. Increasing the number of iterations the accuracy of temperature
determination is approximately the same or somewhat lower. .

Table 2 shows the mean percentage deviations (MD) of calculated tempera-
tures obtained for a set of 30 side-on spectra. Kalal’s method proves to be very
accurate for radial distances lower than 0.7 R (M D = 1). Beyond this limit a sys-
tematic error appears due to the increase of the signal-to-noise ratio near the outer
radius which reduces the validity of the zero derivative condition. This can be, of
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Table 2

Percentage deviations of calculated radial 3:&532:.@ 0.~JTV = 100(Teatc(r) — Teheor (7))
[Tiheor(r). M D (n,m) is the mean percentage deviation, gb?&zv = u\?: -n+
1) Yo, AT(r:), the noise level (r) = 100 .w\?z_u.?,v. Sr.mnm Imax is the maximum in-
em=mm€lom the corresponding side-on band profile. i and k is, respectively the number of
iterations and the number of Fourier coefficients used.

r T  noise Frie Vicharelli Kalal
[K] level 1=5 =3
.000 3000 1 +14.13 +2.33 -.3
034 2994 1 +18.92 +.08 -.05
069 - 2974 1 +10.61 -2.57 4-.63
.103 2942 1 . -1.26 -2.01 +4-1.08
.138 2897 1 +6.65 -3.01 +.89
172 2839 1 -4.7 -4.38 +.69
.207 2769 1 +.22 -2.45 +.29
.241 2685 1.1 -6.53 -4.41 +1.21
276 2589 1.1 -.04 -2.59 +.15-
.31 2480 1.1 +4.16 +.85 -.68
.345 2358 1.1 +.3 ) +.26 -.84
379 2223 1.2 +5.8 -1.4 +.67
414 2075 1.2 -6.28 -3.1 +.42
.448 1915 1.3 +5.6 +.22 -.15
.483 1741 1.3 -1.29 -4.11 -2
517 1559 1.4 +.55 -2.92 -.1
.552 1385 1.5 +2.23 -1.74 +1.51
.586 1225 1.7 -1.85 - -4.87 +2.56
.621 1077 1.9 -.714 -.37 +2.61
655 942 2.1 -3.51 -.65 +4.34
.69 820 2.5 +16.21 +13.77 +7.18
724 711 3 +417.18 +5.92 +11.12
759 615 3.8 +12.26 +11.61 +16.33
.793 531 5.1 +5.43 +3.92 +4+22.75
.828 461 7.3 +2.27 : +1.19 +30.94
.862 403 11.6 +3.79 +1.31 +41.28
897 358 21.6 '435.56 +32.76 +51.77
931 326 52.6 +7.47 +94.97 +61.51
.966 306 232 ’ -38.65 -38.97 +68.07

MD(1,26) =548 MD(1,26)=3.15 MD(1,26) =5.73
MD(1,15) =577 MD(1,15)=2.25 MD(1,15) =0.55
M D(4,26) = 4.30 MD(1,21) = 1.26

course, substantially reduce by means of appropriate numerical filtering procedure
usually used for treatment of raw spectral data.
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IPEMEHEHUE HYMEPHYECKHX METOOOB BLIYHCIEHRUSA
HHTETPANBHOI'O YPABHEHHSA ABENA
B CHEKTPOCKONHMYECKHX NAHHEIX

B pa6oTe npusopETCa cpasrenme wecra HYMEPHIECKHX METOJOB BHIYHCIEHES NMpe-

o6pasosanns AGens. O6cyxpaeTcs DaBECEMOCTD TOYHOCTH METOROB Ha KONHYECTBE H
OwHGKaX SKCHEPEMEHTAILHMX J2HHLX NPE NPHMEHEHHH B pacieTax POTanHOHHOH TeM-
nepaTypn aGpanmonnol nomocs OH monexyn.
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