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Productions of real and virtual photons, materialized as low mass dileptons,
are well known to be closely related [9—12]. It is then natural to ask whether
the mechanism responsible for a very soft photon production might be also
responsible for the low mass dilepton production. A positive answer to this
question would impose severe constraints on models proposed for the low mass
dilepton production. In fact both the quark gluon plasma model [13] and the
soft annihilation model [14] would meet serious difficulties when trying to
explain very soft photon enhancement.

The purpose of the present paper is to study the relationship between mecha-
nism responsible for a real very soft photon and low mass dilepton production.
The data on single leptons will be analyzed in part IV of this series.

We shall start in Sect. I1. with extrapolating basic formulae used in I and II
for real photon bremsstrahlung to the case of low mass dilepton production.
Technical details are presented in Appendices A and B.

The simplest approximation describing the bremsstrahlung off final and
initial state hadrons consists [4, 11] in dividing the total contribution into two
parts. The former is a coherent radiation of forward and backward going
hadrons and the latter is an incoherent sum of bremsstrahlung emitted by
hadrons with roughly the same rapidity as that of the photon. The same de-
composition of the amplitude for the dilepton (virtual photon) bremsstrahlung
is discussed in Sect. III.

In Sect. III. we also compare results calculated in this way with the data on
dilepton mass distribution do/dM. Comments and conclusions are presente ! in
Sect. IV.

IL. BREMSSTRAHLUNG OF LEPTON PAIRS IN THE SCATTERING
OF A CHARGED PARTICLE

As shown in the Appendix A a generalization of the bremsstrahlung of real
photons for a charged particle scattering (on a neutral particle or on a potential)
to the case of bremsstrahlung of e* e~ pairs is given by the expression

¢ 3
do =doP4na(—C,C*") (M?) d'k . 1)
dMm (2n)* 2k,
Here M is the dilepton mass, k the dilepton four-momentum,
o #
ﬁ — ﬁ_ o ﬁ_ ANV

" opik pk

pi and pi are four momenta of the charged particle before and after the
scattering, and
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The final formula for the dilepton bremsstrahlung

—C*C, =|Cx n|?

do* a d3k
=do® -2 4pmmy) £X
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where V= k/k, = k
bremmtglin /o, recalls very much the formula for the real photon

do"=do0 2 L

4r? @?

*dk
—. 6)
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v xn VX n

l—v.n 1-v.n

.M:la MHMV\ &m,.oao.soo is the presence of F(M? in Eq. (5) and the unit vector
! m@ \A %vmmno%v::m_ﬁrn direction of the emitted real photon in Eq. (6) is replaced
. (- 1 == = 5 ) :
the dilepto nw . velocity V' = k/k, = k/w of the virtual photon (the velocity of

The te . o L
s of oocﬂw ,OMMMMMMMM&M% MM vm._n longitudional polarization of the real photon
mOnMJ similarity between Egs. (5) and m@ (6) permits us to generalize easily all
ulas :mom.mOn real photon production in I and II to the case of the brems-
.m:m:_:zm o.m Q:omﬂsm. For instance, the general formula for dilepton emission
in a hadronic collision is obtained from Eqgs. (5a, b) in the same way as Eq. (I1.2)
from Eq. (IL1) (we are now referring to eqs. in paper II). o

III. A SIMPLIFIED FORMULA FOR e*e” BREMSSTRAHLUNG IN
MULTIPARTICLE PRODUCTION

L%:mwmm mnom:w: we m:m_._ present a modification of Eq. (I.4) suitable for the
m: . omo__: o .Q:mmﬁosm <.<:r Yo~ 0 in hadronic collisions. The formula is based
‘ ¢ following approximation: all hadrons in the fina] (and initial) state are
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divided into two groups. The former group consists of hadrons moving appro-
ximately along the axis of the collision. The important quantity for this group
is the charge transfer (AQ(y,)*) across y, ~ 0. Since we are interested in dilep-
tons moving perpendicularly to the axis of the collision, there holds v. n =0 (v
is the velocity of the hadron and n = k/| k] is the direction of the dilepton) and
as seen from Eq. (5b) longitudinal virtual photons will not contribute. The
denominator in the expressions in Eq. (5b) is equal to one, and the absolute
value of the numerator is equal to |vx n| ~ 1. The contribution of this term is

therefore simply
do* v vt @ 1 ) 5
0 ———| = Oty — — 4<4Q0 o)) F(M?), (7a)
A $EkdM/)i " an? o ’

the derivation being the same as that leading to Eq. (1.4). Longitudial photons
do not contribute in this case because of v;. n = 0. The latter group of hadrons
has the rapidities y ~ y, ~ 0. Assuming that all the hadrons from this group
contribute incoherently we obtain for this contribution

” ) N
Ae = v = ot - L Wa pary 4, 4 4, 75}
d3kdM/>
v (82)
v.n

41 @* dy

- (8b)
1 — v. k/NVki+ M? v
In these expressions k; is the transverse momentum of the dilepton, M is the

dilepton mass, @* = k} + M?, v is the velocity of the hadron and ( } indicates
that one takes an average over momentum and rapidity distribution of hadrons

within y, — 0.5 < y < y, + 0.5.
Using F(M?) ~ (2a/37)(1/M) and d*k; = 2wk dk, we can rewrite Eq. (7a)

as follows

where

y |A_ vxn
=\ T vk Ve i

EN
A, Ulm.A
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QO..& .\kaﬂ _ q
2} = oy T T <4000 e
A%&:%_v_ "3 M kG + M v

and Eq. (7b) as

ao.% , N» ~ QZ.
(55) o s S S Ay ob)
dydk,dM/> 3m° M ki+ M- dy
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Mo ocwm:: the mass dependence of the dilepton production we have to integrate
gs. (92) and (9b) over k. Integrating (9a) from 0 to » we obtain

aqzv net 2@° {AQ(y)D :
. QLN&\ whall 0. .w«'
A%&s theo 322 p :A_ +§Nv.

Th ; .
2 mnww_mww mm x1is a B:z.# uncertain parameter. The classical bremsstrahlung
9%@:2 a _mos We are using here is appropriate only under the assumption that

gyo the emitted photon (real or virtual) is much smaller than the energy

(10)

MMMNM_M.uHr/Wn value of x in p-nucleon collision at p, = 450 GeV/c can thus be
poout 3 5/2 ~ A GeV for the leading particles, and somewhat lower for the
e OOMMWMH Mvznw (in EM om.wd.m.v. In what follows we shall present estimates of
nforx = eV. Note also that the term in E. 10
to a coherent radiation off forward i i woonds
; 4 and backward i i
speaks in favour of a larger value of . ¥ Tmoving particles and this
m_._M:%m_oc_M:sm ao.\&_&. ?o.E Eq. (9b) we have to integrate over ki of the
pton and over the directions and the velocities of the radiating hadrons.

Calculations are straj htfo imi .
et resgls Beenmes ghttorward and similar to those leading to Eq. (1.5). The

A do* v _ = ginel |Q~’ QZ&. I
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In Eq. (12) in the same way as in Sect. 2 of |

2 3
{m* + p) s’y + p2sin? g} + AM - ptcos’ ew

*

(12)

_
Nv H.l’N I
Gv& Num Pre™¥n, A~ 6[GeV/! (13)

1s the (pr, @) distribution of final state hadrons, to be integrated over dp,de
T ]
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¢ being the azimutal angle perpendicular to the beam direction, y is the rapidly
of the final state hadron, M is the dilepton mass and k& is the dilepton momen-
tum. The bremsstrahlung approximation we are using might be again reliable
only so far as the energy and momentum of the dilepton are smaller than those
of the radiating hadron and because of that we are integrating in Eq. (12) only
over 0 < k; < ky, ., where k. .. corresponds to the situation when the energy
of the virtual photon is equal to the energy of the radiating pion:

\ﬂw,.wxh.ﬂ + EN — NMNN., + EMu
where m, p; denote pion mass and transverse momentum and M is the dilepton

mass.
To compare the results with data [8] we have to divide the results as given by

Egs. (10), (11) and (12) by do,e/dy and estimate <AQ(y,)’>. We put do,e/dy ~
~ o and {AQ(yy)*> ~ 1. In this way we obtain

ee 2 2
X, (M) = A.%|v \ Aa@v LA _A_ + xlv (14)
dydM/i/ \ dy i M M?
for the dipole contribution. In calculating the contribution corresponding to
Eqgs. (11) and (12) we put

ot o . 95 St I
dy dy dy
obtaining
x,on=2% 1 g (152)
d 3m M
x,on-2% Lg (15b)
L It M

with B, and B, given by the two terms in Eq. (12). In Fig. 1 we plot the three
contributions X, (M), X;(M) and X, (M) and their sum X(M). The dominating
contribution comes from the “dipole” term X,,(M). An accurate estimate of this
contribution requires experimental information about the dependence of
{AQ(y9)*> on dN,/dy. The total contribution X(M) is by a factor of ~ 5 lower
than the experimental data. Note, however, that the data are available mostly
in the region above ~ 100 MeV, where also soft (and not only very soft)
processes contribute.

Note also that for low dilepton masses X, (M) is lower than X, (M), the
suppression of longitudinal virtual photons being reflected by the term M?2/@* =
= M?/(M? + k}) in the second term in the curved bracket in Eq. (12).
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wanamm:m:_::m radiation has a typical @ 2

in Eqgs. (7a) and (7b). This typical feature ca
k;,-dependence at

dependence, which can be seen

: n be studied by measuring the
fixed a dilepton mass. Proceeding as above we define

Y, (kr; My = (99 v\ah (i
dydk,dM/i] dy |, )
dydk,dM/, dy |,-0

where indices 1 and 2 have the same meaning as in Eqs. (9—12) and T, L refer

_,.mw %mﬂ%c::.omm from transverse and longitudinal virtual photons. Under the
pome »E:w:o:m ondo,/dy, .n_\f\&\ as above we obtain the explicit formulas
€ k;~dependence of the dilepton production at a fixed dilepton mass M.
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Fig. 2a. “*Dipole” contribution to the k,-depen-
dence of dilepton production at fixed mass. YD
denotes Y, (k,; M) as defined by Eq. (18).
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Fig. 2c. Contribution from longitudial virtual
photons. YL = Y, (k;; M) as defined by Eq. (19)
(only the second term in curly brackets present).
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Fig. 2b. Contribution from transverse virtual

photons. YT denotes Y;(k;; M) as defined by

Eq. (19) (only the first term in curly brackets
present).
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Fig. 2d. The sum of all contributions to the
k;-dependence of dilepton production at fixed
dilepton mass M.
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The k,-dependence of the sum of all contribution is given as
Y kr; M) uA do v \ Afaqav
dydk,dMm, dy
(20)

Our results on the k-dependence of the dilepton production at y=0andata
.mannﬁa o.w dilepton masses are presented in Fig. 2. A dominating contribution
1S again given by Y, (k;; M). This term 1s proportional to (kr/M)/(k7 + M?) and
:.5 maximum of Y, (k,; M) occurs at k= M (Fig. 2a). Contribution from
virtual transverse photons (Fig. 2b) is of a similar shape because of the presence
of Hrw same factor in Eq. (19), but it is about an order of magnitude smaller
Longitudinal virtual photons (Fig. 2c) contribute by a term which is m::.
mowﬁ,&rmﬁ mam.=2 and its shape is different because of the additional term
M [k} + M?) in Eq. (19). The sum of ali contributions Y (k,; M) (Fig. 2d) is
thus very close 8. Y, (ky; M). This permits a very simple quantitative criterium

= Yplkps M) + Yrtkr; M) + Y, (kr; M).

=0

defined experimentally in Eq. (16) is proportional to (kr/ M)/ + M?).
. A check of whether a set of very soft photon data and a set of low mass

mate formula

q._qmm N
dydM|,-o 31 M3/ 2 dk,

The moﬂzm_m. is derived ?.05 Eq. (1.4) neglecting the second term in the r.h.s. and
‘?oa.: the *“dipole™ contribution in Eq. (92) integrating over kr. The value of x
1s discussed co_o,.z Eq. (10). A more accurate relationship between a very soft y

kr=M

beyond the dipole approximation.

IV. COMMENTS AND CONCLUSIONS

] We have ao.:éa simple approximate formulas for the bremsstrahlung emission
of low mass dileptons. A comparison of our calculations with the experimental

H:o mechanism responsible for the e¢"e” production could be made clear
m_:oam.ﬁma by the data on the kr-dependence of the dilepton production at a
fixed dilepton mass pf and a fixed rapidity ¥ ~ 0. Such data with sufficiently
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high statistics could be also studied as function of two variables M, k.., which
could show whether the data posses typical bremsstrahlung features or not.

In what concerns phenomenological studies there are some questions deserv-
ing a more detailed analysis:

— the accuracy of the approximate formulas used above should be estimated
in a realistic situation — one should generate final states of hadronic collisions
by a suitable Monte Carlo model and calculate the bremsstrahlung production
on the basis of both the exact and the approximate formula.

— data on the mass dependence of the dilepton production should be
compared with a model containing both the bremsstrahlung and soft annihila-
tion contributions giving the dilepton production from the intermediate stage of
the collision.

Such studies should firmly establish whether there is some truly anomalous
enhancement of very soft real and virtual photons and consequently also
whether some anomalously large and cold intermediate parton system [15] is
formed in hadronic collisions.
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NMOMCK MEXAHU3MA YCUAEHUSA 3MHUCCUUN TOPMO3HOT'O U3JYYEHUSA
B PEAKLMAX AJPOHOB

. POXAEHUE JIETKNUX AWJENTOHOB

POMICHUSA JUNENTOHOR NpH DUKCHPOBAHHON Macce AWJIEATONA NO3BONAIOT OTBETHTE HA BOMPOC
O NPUPOLE POXAEHHUA JIETKOTO UNENTOHA,

APPENDIX A

We shall derive here an approximate formula for bremsstrahlung of a lepton
pair. The derivation closely follows that for bremsstrahlung of real photons.
Consider a scattering of a charged spinor particle on a neutral one. Scattering
without radiation is shown in Fig. 3a, scattering with bremsstrahlung of a
virtual photon is shown in Figs. 3b, 3c.

The amplitude for scattering without radiation as shown in Fig. 3a is

Ay = u(py) Ipy, Fv:h\:v,
234

where we have suppressed momenta of the neutral particle. The amplitude for
the massive photon bremsstrahlung in Fig. 3b in conventions of Ref. [16]

becomes
A, =eJarg,af (Ala)

af' = u(py) I'pj, p, I»vh}_ —F—m Y u(p,).

<O

Fig. 3a. Scattering of a charged particle (solid line) on a neutral one without radiation.
Fig. 3b. Bremsstrahlung amplitude off the incoming charged particle.
Fig. 3c. Bremsstrahlung amplitude off the outgoing charged particle.

After some manipulations we get

2pt — k*
€ =) TG, 5= 0 )
_1 20) Ipi, py = K yup) (Alb)
2 k*—2p, .k

In the same way the amplitude corresponding to Fig. 3¢

A, =e~JAng,af (A2a)

1
pi+k—m

as = u(py) y* Ip) + k, p)u(p,)
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can be modified to
2;" + k*
2p" k4 k?
1 a@) [y K] T + k.py) u(p,)
—— 1 )
2 2pi .k + k*
HZomm:os in Egs. (A1) and (A2) is standard, the polarization vector is assumed
0 ,_,M real. 208 that for a massive (virtual) photon k2 #0.
il e M_mmm_om_ formula for the real photon emission is easily obtained from
and (A2). For a real photon k* = 0. It is further assumed that the photon

momentum is small in comparison with 4
i \ Py, pi and that Np;, p,) = Np:
+k.p)=Np;, p, - k). Neglecting k2 in numerators leads to e

ai' = i(py) Rpi + k, p)u(p,) (A2b)

al + at = () :as_:@_%: i ag.
_ Pk plk i)

.u\.mlﬁ. &k

Pk pkl Qr2e

do’ =do %47

(A4)

v xn vxn
e SN

_ Td%
o(l -v.n) o ~v.n)

[

|
do” = ao.a;lln
47’ (43)

WMMBmmMEE::m of virtual photons with k2 # 0 is a more delicate matter. The
y safe way is to om_oz_mﬁ in detail the corresponding Feynman diagram

Mxmvammm_om for massive (virtual) photon bremsstrahlung we proceed in the same
m:% as above m:a.:om_aﬁ the k-dependence of Ip} + k,p)) and Rp; p,—k)
second terms in the r.h.s. of (Alb) and (A2b). The resulting mam,_:h_mo

Wt af =00 N, pu)| R Zpir s =] e

| | k*—2p, k 2p k + k2
Wm mm_mmm 5<m:mm: (vanishes when multiplied by k#) and for k2 0 gives the
CM% _H.M:MMHM»&V .qon. the real photon cnnsmm:m:_csm. C:wozcsmﬁ:\, for p, = p;
s -<mEm.r_:m .m:a therefore unacceptable. In the sence of the brems-
ung approximastion we further neglect & in numerators with respect to p;
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and p, and k? with respect to p’.k and p.k in denominators. In this way we
obtain

14 4t
al' + at = a(p) :R;_:@_%: d +..m|g (A7a)
pik  pi—k

which means that the virtual photon is coupled to external legs in exactly the
same way as the real photon.

Note that (A7a) is the lowest term obtained when expanding the amplitude
in powers of k.

The choice of Eq. (A3) for real photons is motivated post hoc by agreement
with the formulae (A4) and (A5) known from classical electrodynamics. We
shall show below in Appendix B that (A7) is obtained in classical electrody- -
namics of a massive “photon” field. The cross-section for a massive photon

corresponding to the amplitude in Eq. (A7a) is

do” = do® 2 P_N‘_ vxn __vxn |,
42 Ul = v'.V | —v.V
(A7b)
+R~ v.n  wv.n vwald.w
D ll—v. Vv 1—vV o’

where V and M are velocity and mass of the massive photon. Note that in
addition to be transversally polarized photons we have also the contribution of
longitudinal ones, the latter being suppressed by the factor M?/w".

Having specified the coupling of a virtual photon to charged particle we can
proceed to the calculation of the bremsstrahlung of dilepton pairs. The corres-
ponding Feynman diagrams are obtained simply by attanching e* e~ legs to
virtual photon lines in Figs. 3b and 3c.

The sum of amplitudes for Figs. 3b and 3¢ modified in this way is

~4me?
M, = E\wﬁlb »Nm c ik, A) y*v ks, A), (e8)
where
ry H
ht _ \m_ _ Di A>©v
pi-k  pk

k, k, are dilepton momenta and A, A’ denote dilepton polarizations. \S.\Mo_ 1s the
amplitude for the scatterring without bremsstrahlung of the lepton pair.
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m ON A. )
8 = 1M (2Z2) Sp 66+ ) oy — e, (Al0)

The total Cross-section can be written as

o = [d T,,(k) fro(i), (Al1)

where

_ Q2
W aaw ) MGt gy k=i Sri D,
U 2E,2n) 2E,(21)

’ N (A12)
uv __
S =184k, — SA%Q SPAK, + m) 1% (ky — m)
d’k, d’k,
Q' 2k 2nmy 2k
ere W /\m 1S the total c.m.s, energy of the collision and g =|q| is the

magnitude of momenta of colliding particles in the ¢.m g

Thi iy

ch\:_mu Mwmwmwom_wo” follows Ref. [16, 17) and facilitates somewhat the calculations

ol mo m\«to use the method of invariant integration. The tensor f»v

g N n Em:a both tensors T*"and f** are gauge invariant in the sense
v=k,T" = 0 and Mk, = k,/*" = 0. Because of that

v k*k? |
i uﬁwillv: L,

A straightforward calculation gives

1 1 2 2
Rl C P

3 3\ k2 Q2?2 PR K (Al4)

wh i
oo:aﬁwwnﬁmms.ﬁw lepton mass. The term k,k, in Eq. (A13) gives zero when
mvnnoxmam:h: ,wammcm_o EMm:mE tensor T*". In the sense of the c:ﬂ:mmqmr_::m
neglect 4 j 1 i
bt B glectkin 8(p, + p, — k ~ P~ p)in Eq. (A12) and insert
I'=[dM*5(k> — ary oK),

A
§ a net result we find for the cnﬁsmm:m:_::m of dilepton with mass M and
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momentum k

3.
W.M = aq_o&aﬁ!qiivﬁ\xuv fa\,l (A135)
dM 2y 24"
where
2 2 2
E\Swvummitﬁ + 2m”) _IAEJZWNJ_IA (A16)
in M? M 3z M
APPENDIX B

We shall show here now one can arrive at the formula for the bremsstrahlung
of massive photons in the framework of the classical field theory. The field
equation for a massive vector field is (in the conventions of Ref. [17] with
c= h=1)

(=0 +A4— M)A+ = —4gj», (BI)
where M is the mass of the field, A is the 4-potential and j* is the R-current.
We are interested in the Fourier components of the 4-potential rather than in

the 4-potential itself. The equation for these Fourier components is effectively
the same as in the case of the massless field

(A+ k)AL= —dnjs, (B2)

the only difference being that the quantity & (the magnitude of the wave vector)
is a more complicated function of the frequency w, k = (0’ — M?)'%. The
solution to Eq. (B2) has the familiar form

&n % w q;\.h?q%\, (B3)

where R = | R, — r'|, R, is the radius vector of the place of observation, and far
from the source this reduces to
A =L e [ emkr juryqp, . (B4)
Ry
where k = k n, nis the unit vector in the direction of R,. For the field generated
by a pointlike particle we obtain

ar =L gimg % ek, (BS)

where g is the charge of the particle, ris the radius vector of the particle and
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v = (1, v), v 1S the velocity of the particle. Note that k — oV, where Vis the
group velocity of the propagation of the radiation, therefore
| - =
\AMHI‘ n.»k:Q\, O_Sti_\.ltth_\
R] B . (B6)
Let us now consider a particle scattering off some external centre of force.
The full mvmnq_:: of the radiation of such a particle depends of course on details
of the Scattering, but one can always compute the low frequency part of the

Enhm_;sﬁx ct\+i g (B7)
R, il -v. V) o —v. v

where m\msa V' are the celocities of the particle before and after the scattering,
respectively. (The primitive functions at r = + o0 do not contribute since they
are zero in the sense of the theory of distributions).

The quantity we wish to compute is the full energy radiated into the solid
angle d€2 in the frequency interval de, This energy is given by

glan AL = M? 428 1 we obtain the additional term to the energy flow A4S =
H.\§~kob\ﬁ~. The Fourier component of this term is 4S,=M*A%A /27 and
cmim the Lorentz condition A2 — k. A, = 0, which can be easily Mqomma to be
valid for the 4-potential given by (B6) as well as (B7), we find

I &
B%&.:”\—\Nm M_be.a_w. (B9)
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For the Poynting vector we have

Stom.0- N = - k| A,x nf? (B10)
’ 2

and putting these two expressions together, inserting them into Eq. (B8) and
using Eq. (B7) we get

Qmﬁ v xn vxn |
de= 21— = +
irlod-v.v) o -v.V
(B11)
2 ’ 2
+|\§l\ v'.n _ v.n MTu».
@’ lo(l —v'. V) o(l—-v. v

The cross section for the production of massive photon is equal to this quantity
divided by @ (the energy of one photon in the units in which # = 1) and
multiplied by do'” (the cross section of the scattering of the radiating particle).
If we put g = ¢ and use ¢? = 2, we obtain the bremsstrahlung formula (A7b).

APPENDIX C

We shall give here an interpretation of the formula for the bremsstrahlung of
dileptons relating this process to the creation of dileptons via the decay of real
massive photons. The differential cross section of the bremsstrahlung of dilep-

tons is
do=d*%dT

uv

dr+ (C1)
or, equivalently

do= L au»agaﬁza\s_, 2

@
where dT,,, df** are given by the formulae (A12) in which only the integrations
necessary to get rid of the &-functions are performed. Neclecting k* in the
argument of the S-function in d7*" we get dT* = mo.evﬁms and using the
expression of the differential cross section of the bremsstrahlung of real massive
photons given in Eq. (A4) as well as the definition of ¢* given in Eq. (A9) we

find

mu\aQN‘EH QO&FMSGE Aﬁwv

dra(—c?)
The quantity df*" is related to the differential probability of the decay of a
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massive photon with the given polarization £* into the dilepton in 1 sec. If we
denote this probability dw(e*), we have

1 4drng
Qrt k*

Inserting Eq. (C3) into Eq. (C2) and making use of Eq. (C4) as well as of the
relation k% = M2 we arrive at

g,8.dM = 2odw(e”). (C4)

do=22 dMdo"dw (c*/(—c)'?). (C3)
M3

Insuch a way the production of dileptons from virtual photons can be viewed
as the production of real massive photons with the lifetime @/M? (which can be
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