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CHAOS IN A SYSTEM OF COUPLED OSCILLATORS
AWREJCEWICZ, J."), Lodz

The paper present on the basis of numerical methods the transition from periodic
to chaotic orbits in a system of coupled nonlinear oscillators. The periodic orbits have
been traced by solving a boundary value problem while the chaotic motions have been
examined by means of standard methods based on the solution of the initial value
problem.

INTRODUCTION

The answer to the question about the possible ways from regular to irregular
chaotic motion in real physical systems is one of the important problems of
chaotic dynamics of nonlinear systems. In the case of simple sinusoidally driven
anharmonic oscillators the problem seems to be to a great extent explained (for
reviews on the subject see e.g. [1—3]).

A particularly effective method which makes it possible to trace the transition
from regular to chaotic or quasiperiodic orbits is the numerical method based
on the solution of the boundary value problem with simultaneous observation
of characteristic multipliers. The latter are decisive for the stability and the
bifurcation of the considered periodic orbit [4]. In the case of simple oscillators
with harmonic forcing chaos can occur after the saddle-node bifurcation (the
characteristic multiplier crossing + 1) or by a cascade of bifurcations doubling
the period of solution which is connected with the multipliers crossing — 1) [5].

We shall now follow the situation leading to chaos in a system of coupled
nonlinear oscillators subject to harmonic forcing.

II. THE MODEL AND THE METHOD

The calculation model is an unbalanced rotor with a rectangular cross-
-section supported in a harmonically forced frame [6]. The dynamics of the
considered system is governed by the following equations
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where while x, is the horizontal displacement of the frame; Xy, x;is the horizont-
al and vertical displacement of the concentrated mass m found in the middle of
the rotor length; M is the frame mass; k,, k, are rigidities connecting the frame
with the base; k- and k, are rigidities of the transverse section of the rotor;
@ — is the frequency of the rotor revolutions; F and w, are the amplitude and
:.5 external forcing frequency; a and @, is the unbalance position; ¢, ¢,, ¢; is
viscotic damping; g is the acceleration of gravitation,
Thanks to the relations given below
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the following dimensionalless set of equations is obtained
Vitdpy+ 0 +2)y + p} + by, cos2vr — €yy — £ey,C082vT +
+ £ey;sin2vT = gcos v, T;
u, v B :
=N+ dy,— -y (1 +ecos2vr) + (1 + £COS2VT) Y, — £y,8in2vr =
z e
(3)
= ¢q,sinvr + ¢,cos vr,
U

N\d\mu+&u%u+mm§m5wﬁ.l €yy8in2vr + yi(1 — gcos2vr) — | =
e

= ¢,C0s vT + g, 8in vr,

where: manE and \HM.
z ket k, dr

The approximate fixed point y* near the unknown “true” one is assumed
and numerical integration using the Gear method is carried out. A point
mapping M (y¥) = M¥ is defined then. The error £ — v — M® shows the
accuracy of the estimation (k). Thanks to the shooting method and the Newton
—Raphson procedure we can look for zeros of the error function E (in the
considered case calculations were interrupted if the following norm

IE|l = |E1> < 107° occurs).
The characteristic equation

oM,
Oyr

z(0) = det(H, — ol1) = 0, He= 4)

yields the characteristic multipliers, where H ris already known from the above-
-mentioned iteration of the point mapping at the fixed point.

III. RESULTS

Calculations have been performed at the following constant parameters:
2=01,d =04, d,=d; =02, e= 10, =01, v=08, g=04, v, =10,
4, = 0.15, g, = 0.0. b has been assumed as bifurcation parameter. For b = 0.001
a periodic solution has been found with the period 10 7 on the left and on the
right of the point 0. They are not symmetrical, however, as it can be proved by
the time histories shown in Fig. 1a and the exemplary projection of the solution
on the plane y,(y,) — Fig. 1b. The analysis of the other projections of the two
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The investigated period solutions with the corresponding characteristic multipliers

Characteristic multipliers (Re, Im)

b
1 2 3 4 5 6
0.001 ~0.13; 0.13 —-0.13; —-0.13 0.0; 0.0 0.0; 0.0 0.21; 0.01 0.21; ~0.01
0.003 -0.10; 0.15 -~0.10; 0.15 0.0; 0.01 0.0; -0.01 0.21; 0.01 0.21; -0.01
0.005 —0.06; 0.17 —-0.06; —0.17 0.0; 0.0 0.0; —-0.0 0.21; 0.01 0.21; —0.01
0.009 0.37, 0.0 0.08; 0.0 0.0; 0.0 0.0; —-0.0 0.21; 0.02 0.21; -0.02
N 0.011 ~0.04; 0.17 —0.04; —0.17 0.21: 0.02 0.21; —-0.02 0.0; 0.0 0.0; -0.0
,:oo:o 0.012 —0.54; 0.0 0.21; 0.03 0.21; -0.03 —0.6; 0.0 0.0; 0.0 0.0; 0.0
f: 0.013 —1.0: 0.0 0.20; 0.03 0.20; —0.03 —0.03; 0.0 0.0; 0.0 0.0; 0.0
_-Z 0.014 —1.61; 0.0 0.20; 0.04 0.20; —0.04 0.0; 0.0 0.0; -0.0 -0.02; 0.0
‘::,D 0.0144 —1.56; 0.0 0.20; 0.04 0.20; —0.04 0.0; —-0.04 0.0; 0.0 -0.2;0.0
g 0.0146 -0.11; 0.13 —0.11; —0.13 0.20; —0.05 0.20; 0.05 0.0; 0.0 0.0; 0.0
':é 0.001 —0.13;0.13 —=0.13; —0.13 0.00; 0.0 0.0; 0.0 0.21; 0.1 0.21; —0.01
E 0.03 0.01;0.26 0.01; ~0.26 0.01; 0.0 0.01; -0.0 0.28; 0.01 0.28; —0.0t
a 0.004 0.08;0.24 0.08; —0.24 0.01: 0.0 0.01; -0.0 0.28; 0.01 0.28; ~0.01
0.005 0.20: 0.16 0.20; ~0.16 0.01; 0.0 0.01; -0.0 0.28; 0.01 0.28; -0.01
0.0054 0.36; 0.0 0.18; 0.0 0.26; 0.0 0.01; 0.0 0.01; 0.0 0.31; 0.0
0.0056 0.50; 0.0 0.13; 0.0 0.27: 0.0 0.01; 0.0 0.01; 0.0 0.30; 0.0
0.0058 0.68; 0.0 0.10; 0.0 0.27: 0.0 0.01: 0.0 0.01; 0.0 0.30: 0.0
0.006 0.90; 0.0 0.07: 0.0 0.28: 0.0 0.29: 0.0 0.01; 0.0 0.01; 0.0
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i » ; Fig. 3. One projection of the Poincaré map of
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1V. CONCLUSIONS AND DISCUSSION

In complex physical systems it is possible to observe transitions from periodic
to chaotic orbits which have not yet been found in systems of the dimension 3
such as the harmonically driven oscillators. The upsetting of the symmetry of
both 107 — periodic orbits causes their different behaviour with the increase of
b. First the right (b > 0.006) and then the left (b > 0.0146) orbit leaves the real
space. The void in the phase space is filled by a chaotic attractor. The occurrence
of the chaotic orbit is not accompanied by a bifurcation of the left periodic orbit
connected with the passage of the characteristic multipliers through a unitary

circle of the complex plane.
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XAOC B CUCTEME CBS3AHHBIX OCUWIATOPOB

B pabore npuBemeHbl OCHOBHBIE HYMEPHYECKHE METOIB IS MEPEXOAd OT MEPHOAMYECKOi
K Xa0TH4eCKON OpONTAM B CUCTEME CBA3AHHBIX HEMUHEHHBIR ocLMLIsTOPOB. B mepuommueckux
opbHUTax XapaKTEPHO PELIEHHE IPAHUYHBIX YCIIOBUH NPOOJEMbI, 10KA 4TO XaOTUYECKOE ABUKEHUE
HCCIIeNyeTCs ¢ MPUMEHECHHEM CTAHAAPTHBIX METOLOB C PEIICHHEM NEPBUYHON BEJUMHMHBI HCCie-

Ayemoi npobneMsl.
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