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SCALING RELATION FOR THE WIDTHS
OF ARNOLD TONGUES

MARKOSOVA, M."), Bratislava

The scaling relation for the widths of the Arnold tongues is introduced _.omﬂ.rnn
with the method of estimation of the scaling exponents. The accuracy of estimation
is discussed.

INTRODUCTION

Dynamical regimes on circle maps together with the oo:omvosﬁzm scaling
relations have been widely studied in recent years [I—5]. Here we introduce a
method of estimation of the scaling exponents, which scale the widths of mode
locked intervals in parameter space. As a model of circle map we used the
well-known two parametrical sine map

folx, k) =x+ 2 — %mm: (2mx) m
i

with frequency parameter Q€ (0, 1) and nonlinearity parameter k > 0.

1. CIRCLE MAPS

The phenomenon of mode locking is not rare in systems with ﬁ.éo ooavﬁ_:m
frequencies. When two oscillators are coupled Smﬁrnﬂ they influence eacl
other and under certain conditions their combined Eocn: cmooﬁnm periodic
(locked). Sometimes it does not happen and the Rmc_:.sm motion has HW,\M
independent frequencies (unlocked motion). The avﬁm::o.m of mcg couple
oscillators and the structure of locked and unlocked regions is succesfully
modeiled by so-called circle maps. .

Circle maps in general are defined by the relation

flx) = x+ 2+ g(x), 2
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where g(x) exhibits a nonlinear function which fulfils the identity

g(x) =g(x +1).

For the function f(x) the circle map identity is valid

S+ 1) =f(x)+ 1. 3)
The functions 00 = x

1) = flx)

S = () 4)

P =1 ))...)

——
:K

exhibit the zero-th, first, second ... n-th iteration of f(x). The dynamics of circle
maps such as (1) is well described by the so-called winding number

n— o n

The most frequently used representative of circle maps is a sine map (1). For
the nonlinearity parameter k less than or equal to 1 (k < 1) and W rational

A:\H Wv, there exists a nonzero interval of frequencies A€, (k) in which
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Fig. 1. The Arnold tongues for a map (1). The
black areas exhibit parameter values of periodic | 1

regime. 0 01 Q 03 05

This is called “mode locking™ and the map has a periodical dynamical regime
(periodical cycle). The intervals of £2 exhibit the Arnold tongues (ATS) in the

parameter space of (1) (Fig. 1). If W is irrational, the dynamical regime on a map
is quasiperiodical.
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As k grows, ATS become wider and at k =1 they cover the entire £ axis
excluding a set of points (Cantor set) where the winding numbers are irrational.
The mode locked intervals at k = 1 develop a nice self similar structure called
the ““devil staircase* (Fig. 2). For k > 1 the ATS overlap and even chaotic orbits

could arise. The parameter value k = 1 is therefore a critical value of chaotic

motion.
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Fig. 2. “Devil staircase” of a critical sine map (k = 1.0). Winding number does not change for an

interval of €. The structure is self similar.

The periodical cycle (6) with the rational winding number W = P/( is stable
until

df8(x)
dx

IA

x; — point of the cycle. @)

X = .4\

The parameter 2 = €, for which the equality holds is called the maximally

mHmEm .vo:: of Ay, (k) and is always located very closely to the centre of the
periodical interval.

II. SCALING RELATIONS

.‘;.n scaling of the Arnold tongues is a problem, which interests many
mo_mzﬂ._mﬁm.:fu._. In [2] Shenker studied the scaling relations connected with
the winding numbers converging to the “golden mean™

Wem —

=[, 1,1, ..]. (8)
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One easily finds that

:\.n‘:”x:lﬂm( A\ﬂ.\\ﬂ.“_v n = :V_«T_m“\u va

ﬁmamﬂrwmmgo:mnom::Ecmqm.
Shenker’s results were extended by Alstrém et al. [3] to ATS having
winding numbers converging to periodic irrationals

E\HIIMIH?_Q?.:Q:.:Q:.A, a,....a,,J. (10)

a, + —
a5 5 .

The focus of our interest is the subcritical region of the map (1) (k < 1) [3].
We have demonstrated numerically that there exists a scaling law for the widths
of ATS is this region of parameter space.

We chose ATS having the winding numbers

W(Q) = F/Q (1
Q=0y+mPy, m=0,1,2, ..,

where W(Qy) = P,/Q, represents the first and biggest winding number of all the
set.

We studied numerically the Q-dependency of the widths of ATS having W
given by (11) for a fixed Fy/Q, and k. All the numerical calculations were carried
out for a sine map (1). The edges of ATS were calculated by a two-dimensional
Newton iteration method proposed by Jensen et al. [1]. The condition of a
stability of a certain Arnold tongue is

fEX)=x+P
dfge _ (12)
dx

That means that at the edges of the ATS vector g(x, )

f8(x)—x— P
alx, Q) = @v = dmx (13)
ax

isequal to zero. Expanding g* = g(x*, 2*) around the initial point of iteration,
g(xy, ) = g,
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where

oo 4= (x* Q%) — (X0, £2) (15a)
%
P ox 090
%, %, (15b)
Ox 30
we find that (for g* = 0
A~ —.4' g, (16)

and so the first approximation will be
OF, @) > (6, Q) = — il ' gy + (x,, £2). (17)

Iterating (16), (17) it is possible to locate the endpoints of the P/Q interval. The
accuracy of our calculation was tested by calculating symmetric ATS (W =

=1 — . .
o W). All boundaries of ATS were determined to an accuracy of at least
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Fig. 3. ithmi 4 indi
g romwn:rs—o%_oﬁ of denominator Q of winding number against the width of corresponding
rnold tongue. The dependences are asymptotically linear.

mnokwwm“w I me.: ﬁoE Fig. 3, all logarithmic Q-dependencies of ALy (k) = s,(k)
mptotic i is li ity indi i
e Q@ ally (Q — o) linear. This linearity indicates scaling relation for

Sg=CQ 4 (18)
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There are two possibilities of calculating the scaling exponent a:

1) to calculate @ as a slope of a line (Fig. 3) by a linear regression from a few
points having a great Q.

2) to find a method of estimation of the exponent 4.
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Fig. 4. Dependences of @, on Q.

The first method is rather time consuming, because we need to penetrate
sufficiently into asymptotic regime. Moreover we have no guarantee that our
approach is successful enough. Therefore we have used a second way. By a
linear regression we calculated an approximate @, from five neighbour points of
(In Q, —Ins,). We repeated this process several times, for several O-s in a certain
sequence of ATS (11) and for a defined parameter k. This way we mapped how
the scaling exponent changes with Q (Q was taken as the smallest one of the five
points). The dependences (Q, QInd,) (Fig. 4) are linear. Therefore we con-
cluded that

QInd, = u+ vQ, (19)
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which means that

a, = nm +v
and because ¢ (20)

—_S Q”Q

from (20) we get o
v=Ing 2n
The parameters u, v were cal i
[ U, culated by a linear regression method. Th
for a few Investigated sequences of ATS are listed in tab. 1. e el

The list of scali i Koy
of scaling exponents estimated for various parameters k and various sequences of Arnold
tongues.
e e
x 1 2 3 3
24+ m 34 2m 4+ 3m 5+ 3m
1.0 2.999179 3.000157 2.999366 3.000048
0.97 2.996893 2.991927 2.9870187 2992142
0.95 2.996388 2.988935 2.983508 2.9942489
— T ]
2.993215 2.978083 |
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- Fig. 5. Dependences of a, on Q plotted together
r moﬁmz values of k which were investigated and
g , _ | various sequences of Arnold tongues. The li-
0 50 100 150 nearity indicates the smallness of the higher
Q order contributions in (19).

o x_wM:.::m: problem for a subcritical circle map was investigated by Ecke
0 M\.ﬁ ]. ,;mw.U_OH the logarithm of s against the logarithm of Q for a constant P.
4s not objected the by (1 1). They found the same scaling relation as we (18)
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with @ = 3.0. They calculated the scaling exponent @ by measuring the asymp-
totic slope of lines (In sy, In Q).

To summarize our results we found the scaling relation for the widths of
Arnold tongues having fixed P and Q given by (11). In order to avoid cumber-
some consuming direct calculations of the scaling exponent @, we developed a
method to estimate it. The results given by our method agree with those of
Ecke [4] for a critical circle map (k = 1.0) very well. For a subcritical map
(k < 1.0) the higher order contributions in (19) should probably be taken into
account. These contributions will be small, because a plot of (Q, QIn dy) for all
values of k and all investigated sequences of ATS makes a line with a slope

(Fig. 5)
Ind = 1.092 + .0026,

which means that & is equal to 2.9802....
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BBIPAXEHWUE CKEWJIMHIA JAJISI HIMPUHBI A3bIKA APHOJILJA.

WE@N*OISO cKkeiiMHra s HWIMPUHBI A3BIKA >ﬁ:0bvhm BBEJICHO BMECTE C METOJOM OUECHKH
3KCHOHEHTOB CKEIJIHHIa. omo%*bmnﬂom TOYHOCTDb OUCHKH.
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