acta phys. slov. 41 (1991 ). No. 3

PATH INTEGRAL OF A HARD CORE POTENTIAL
CHETOUANI, L."), HAMMANN, T. F.), Mulhouse

In order to determine the propagator of a quantum particle moving on an axis
under the constraint of hard core, we first introduce a second particle, identical to
the first and moving on the same axis. This fictitious particle is eliminated afterwards,
with boundary conditions determining the fermionic nature of the two particles.

L. INTRODUCTION

In the framework of a path integral, we propose a method of calculating the
propagator of a particle in a constant potential limited by a hard core. Choose
the potential to be equal to zero, for x > 0, and infinite, otherwise:

0, for x>0,

V(x) = W 0

00, otherwise.

To solve the problem we introduce a fictitious particle identical to the first,
moving along the axis 0y, and thus extending the space from the axis Ox to the
plan Oxy. The physical nature of the two particles is determined by the boundary
conditions; in the present case we consider them to be fermions,

II. PROPAGATOR

The propagator relative to potential (1) taken into consideration can be
written formally as follows is standard notation [2]:
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K(x,. x,; T) = [2x W._. T mx?
J2x)exp h a% — *\?inu @)

h 2

or, in discretized form
.

Ko, x5 7) = lim (] Alsiv\ ' ax
0

N—oo )it 2izhe) o5
N s
1l m j j
exn J1[ :
T exe WFMQ\I B f = +Na-_ﬁ.
where
X =x(1);e=1 —¢ I
il = : - :
2 R x(£,); x(t,) = x(1,); T = 1, — t,, are the usual

notations.

It is obvious f i
rom this discrete fo
rm
then K = ( because

me‘HIW mVAxn x k.v; or exp Lyt X |
1 5 " € A 5 z are oscillating with a high

frequency.
Th
us, the propagator to be calculated is

of the propagator that if x, or Xy €]— 00, 0]

K(x,, x,; NJVH‘.QXQVQ ﬁw.‘é:\cﬁ
s Wi 3

for x, and x,€] 0, ool.
Let us now insert the identity

[-an[ fosoemft [ 5]

into equation (3). It yields:

+a0
NAA.X& X d,‘, d =
> Nas y, K(x .
sTmﬂQ —x g A b Vbs Xas Va; N;vu AA.V

NNH.Q@HAD@%QV Wﬁ ﬂA\rsu.N M,
Qnmh 2 +Mav&w, (5)

mw :~® mv _v m
ropagator \%Y% \% C N:Q O 5 H—Jﬂ: mass

being respectively m and Th €n increased by
tively M i i
e . | M. The dimension of space ha i d b
15} s-thus be
:m::.: moa:ozmo_: M\Mﬁ this second .m:E:mQ particle. The n:Emzm_aow Mw the
fictitious particle h a mass M is obtained through the integration on the

146

variable y,, in equation (4). L
reduced mass and with the tot
m, = m, = 2m,

et us now identify the masses 1 and M with the
al mass of two identical particles of equal mass

m;nt, and M = m, + my = 4m. (6)
n, + 1,

"M =

travelling on the same straight
dentify the position x(1) with
he points x, (1) and x, (1), and
f mass of these two particles:

Let us now suppose that these two particles are
line, taken to be the X axis, and similarly, let us i
the relative distance of the two particles located att
let us identify y(1) with the position of the centre o

x(t) = x (1) — %:(0),

x, (1) + x,(1)
5 .

(N

»n =

transformation (7) being equal to 1, the kernel (5) describ-

The Jacobian of this
e same axis — of the system of two identical particles,

ing the motion on th
becomes:

. AT
R s i ?W3L§_S§NSQL$ miid + ] ©
0

Since

—m<y<+ooand 0 <x<+0,
it is easy to show by means of the transformation (7) that the motion of the two
particles, described by (8), obeys the condition

— o0 < X,(1) < X (f) < +00. 9)
rictly undiscernible (that is to say, there is no

tum mechanics thus compells us to take into
o identical quantum particles and therefore

However, the two particles are st
way they can be tagged). The quan
consideration the exchange of the tw

the condition:
— o0 < x, (1) < x,(1) < © (10)

when one calculates the propagator (8).
Then the transition amplitude (8) is the algebrai
g the two processes, the direct one and th

¢ sum of the amplitudes

characterizin e exchange one [2].
The kernel (8) is thus written:

NN = NN:.R.QAR_? Xahs Xygs ‘XN:W ‘va W NA}.;,ARES Xips Xigo Xy NJV AMﬂv

147




The sign .o::n exchange term K, is plus or minus, depending on whether these
two .Um:_o_om are bosons or fermions. One can specify the nature of the two
_umﬁ‘:o_nm as .wo:oim“ For x, or x,=0,K=0,and following statement @HK=9
This condition is only satisfied by fermions, i.e. by the minus signineq. (11) ,;o.
kernel (11) is therefore given by: .

:2 T & N N -
_u 7 .ﬂ:k; IR§V+ (o0 — X1, LM,

and, in the former coordinates,

Fo_m 2im im im
2 weeA L, EVTANN?; %v - Q_AN:\M?;%.

(13)

Finally, we get by the equation 4),

172 :
?1:3* m v ﬁ dm N (im
diztt) |TP\opp e %)) —exp 2n g

. :
.‘,Qxﬁvnxnﬁwﬁ a%ﬂ.ﬁlmsswlf%’ _
h Jo 2 ) 2

mao ime
=— (r,r v_\Nnxv_HIIQNITxW cot L[ Ol
i#sin(o7) 2 T8 OB T, i#sin (wT)/”
1/2
where U\HMT +.§~ .
2 %

One has to set w = g = 0 ang to use /,,(z) = 27z)" ""sinh 2.

HI. CONCLUSION

In this om_oEmao: of the propagator, we have shown that the Dirichlet
boundary conditions are satisfied by fermions.

The + sign for the bosons in equation (11) takes into account the Von
Neuman boundary conditions.
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On the other hand, it is easy to show that the kernel (12) can be interpreted
in the following manner:
(1) it governs the movement of two identical particles (fermions) moving on the
same axis, so that the first term of the equation (12) satisfies condition 9) for
aand b, and so that the second term of this equation (12) satisfies conditions )
and (10) for a and b, respectively.
(i) it governs the motion of one single particle of mass 2m, which is submitted
to the following potential:

0, ifx,<ux,

—\A.N_, .KNV ”M

0, ifx, > x,.

The action of the first term of the kernel (12) is evaluated on the classical
path: The particle starts from the point (14, X5,) of the plane (x,, x,) and arrives
at the point (x,,, x,,) after a certain time 7. The action of the second term is
estimated according to the direct path leading from the point (x,,, x,,) either to
the point (x,, x,,) after bouncing on the X, = x, wall, or to the image (x,,, x,,).
These two methods are equivalent.
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KOHTHUHYAJIbHBIA UHTEIPAJ NOTEHLMANA TBEPJOIO SIAPA

C tenbio onpeaencHus MpOTATraTOpa KBAHTOBOH YACTHUM, KOTOPAS ABMXETCH IO OCH MOJ
BIIMSHUCM TBEPAOro saapa. Bnepssle seeicHna uaenTHyHa ¢ NepBoil BTOpas yacTHua, ABMKYIIASAS
1no Tok xe ocH. Takas pukTUBHAN vacTHua, APH YHCTE IPAHMYHBIX YCIIOBMH ONpEmJIAIOWIMX UX
Qepmuonnyto npupony, noke ucknouACTCS.
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