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THE IMPORTANCE OF INTEGRABLE SYSTEMS
MOBIUS, P.,') Dresden

Integrable systems of classical mechanics and nonlinear field theory are studied.
It is shown that for special problems of classical mechanics it is preferable to charac-
terize the system instead of a Hamiltonian by a certain (f x f) matrix where fis the
number of degrees of freedom. If the time evolution is now given by a similarity
transformation, then the system is integrable and the conserved quantities appear as
the invariants of this matrix. If all particles are interacting with each other, then those
systems are integrable, where the interaction potentials obey the addition formula of
the WeierstraB #2-function.

In the case of nonlinear evolution and wave equations in (1 + 1) dimensions the
conditions of integrability are discussed and it is shown that the nonlinear super-
position principle plays an important role. In integrable systems only elastic scattering
of solitary waves is found.

1. INTRODUCTION

In the last 10—20 years a number of rather complicated problems in the
framework of nonlinear (nl.) differential equations were successfully approach-
ed and methods developed to treat them systematically. These are essentially
equations of motions and nl. classical field equations. However, a greater
number of interesting physical problems, €. g. turbulence, still resisted to be
handled in a satisfactory way. It has now become customary to divide the
problems into “integrable” and “nonintegrable systems”, meaning that in the
first case they can be solved systematically in principle, while in the second case
there are at the moment no reliable analytical or numerical methods available
to treat them. :

When new exact solutions or even methods of solution are found the question
naturally arises, if we can give some explanation of this fact. Are there special
underlying mathematical structures connected with them? To answer this
question we have to differentiate between integrable systems of “finite order”,
being represented by ordinary differential equations and those of “infinite
order”, meaning nl. partial differential equations. As it will be explained below
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””M MMMM_M%M“WM@MWM% n.: ﬂﬂnwmaﬂ case MR the “conserved quantities”, while in
: . is taken over by the ““nonlinear superposition princi-

m“_m MMMMMMHMMN :.5 combination of excitations or their mom_mﬁ%:m. To cm @_‘Mm

s mean or integrable systems we can either give a sufficient number of
> Tve @mmsﬁ._:om or formulate the nl. superposition principle [1].

o v~_m<< MMJ:MW:“ _Hoa_oow for the general properties of integrable systems and

o . p to construct ?:rnn Q.Sav_mm or even classes of examples

o search if they have interesting physical applications.

II. GENERAL METHODS OF INTEGRABLE SYSTEMS OF
CLASSICAL MECHANICS

II. 1 General considerations

L e
o MM hwmmm_:m\_:wﬂ m m_sﬁomawzo M%mﬁam: well defined in Hamiltonian classical
: , [3]. a system described by a Hamiltonian H d i
m ; : epending on 2
s QMMM“W:%QOOE:WNR variables (g;, p;) where f is the number of anmwgm O\M
and possessing f conserved quantities /,(p, q):

Hp, ...pr qy ... q), withl(p,9)=0, i=1..f 1)
In the formalism of poisson brackets this means

{H, I}=0, i=1..f{
but in addition the conserved quantities have to be in involution

I, [} =0, i,j=1..1, @

; .
Hﬂ %MMQWMOGN:%%.@:Q@:H. ,E.,ms one can find a canonical transformation from
, q » 9) with a Hamiltonian depending now only on the Is providing

H(p, q)~ H(ID), I,=0

4 — oH . 8
= — =), 5 1) = _
@N» k »Av S»NAT.@»? \a..l 1 .\.u va
wher i i ,
mwmﬁmg AMW .Wv MR%m:o& mo:osumam_nkmzmgnm describing the time evolution of the
A N ion on m:m ﬂ&ﬁmszozm_ torus in the 2f-dimensional phase space
eaning of the integrability is that i i ‘
the £ onaserved 0 lity one can find in connection with
quantities a itti
o _set of variables admitting to formulate the general
- .zo . Y )
n:msmﬁaw,\oﬂ%_ﬁ_:wmow for m.o:mam_ conditions of systems having f conserved
: purpose it is preferable to ch i i
N . : : aracterize the system instea
y a Lagrangian or Hamiltonian by an (f x f) — matrix L, E:wnn the /2 EmﬁM%M
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elements L, depend on the canonically conjugate variables L = (Li(p, 9))- If we
find now such a form of L that the time evolution is given by a similarity

transformation
L(f) = BOL©0)B'(1), 4)

then all the f different traces
1 1
[,=-TrL'(H)=-TrL"0), n= ... f, (5)
n n

are constant with respect to time and independent, because they are homoge-
neous functions

Ty Ly, TrL? =) LyLy, TrLs = Y LyLyLy, (6)
i ij i

Lk

of the degrees 1 ... f of the matrix elements. These expressions can serve as f

independent conserved quantities. The question is, however, to determine the
physical systems obeying the condition (4). The corresponding equation of

motion is given by the matrix equation

[ =LA—AL=I[L, 4], (7a)

where the matrix A is given by
BB '=—A orB+A4B=0. (7b)

If we demand L to be hermitian L* =L and B to be unitary B*B = I, then

At = —
As the first step we try to connect the trace of the matrix L’

Hamiltonian in the simple form

directly with the

mnwﬁmnWMr}__ns+ ﬂ @
i

blems. It is advantageous to choose as diagonal

selecting a special class of pro
/m, providing the kinetic energy

elements the momenta p;, resp. p;

NJHWMUH\_N: Li=p, i=1 ot

while the nondiagonal elements should give the interaction energy

V=7 L. C))

i>f
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IL. 2. Interaction between nearest neighbours

Let us start with a matrix L of nearly tridiagonal form with rows of the type
O...L;_L;L;,, ... 0) (10a)

with
N\.‘T_Hme..l_: N$.+_H~.c..~.+_ i=2, ...\I_“ A_OS

SOMMMOMMMMWOMJ = L, where v, are some real functions of the coordinates.
ystony dues is now the 3:.: of H.wo first and the last row. Considering a
y with f particles on a circle, i.e. with periodic boundary condition
qr4+1 = ¢y, We choose for the nondiagonal elements of these rows i

NL_N = N.C_Nu N\_\” IN.C\._ N.:Q NL\._ = ~.C.\_u NL§I_ — IMC\I if» AH.OOV
and zero otherwise. Due to (8) we obtain for the Hamiltonian
EHM,:.NNHW 1 2+ 02
> 4 NP Viv1 ) (11)

with the convention v
: 7+1 = Upy, @ system of f particles interacting with i
next neighbours on a circle by the same potential £ both its

Vier= ..W+T (12)
where translational invariance requires
Viip1 = 0(g; — q; 4 ) (13)

The 2f equations of motion for the Hamiltonian system (11)
po=-H o 0 (14)

M”M owm %_Mwaﬁoawa and m.rwcﬁ now be compatible with the f? equations of first
Giving 4 EM ©)) oo%S:::m still Ew undetermined elements of the matrix A.
St same form as L a m:m_mr%onima calculation provides us with a

ential condition for the potential. Its solution gives the Toda potential 4],

[51
g = a’/b’e™™ + cq + d, - (15)

representing the interaction b i i i
i ctween neighbouring particles. There are two
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i. Choosing a® =k, ¢ = a’/b, d = —a*/b’, b 0:

E&.uw»TN |WEU+ v :Sv
gives a weakly anharmonic coupling.

ii. Taking a = b expbd/2, c=0,d =0: V(g) =expb(d — q)
gives for b — oo the two limiting values oo forg < dand 0 for g > d, representing

a hard sphere potential of diameter d.
It is very instructive to consider in detail the Toda system consisting of 3

particles in one dimension of the type [2]

(16b)

= WQ_N F i p) T LT BT, (17a)

which can also be represented by a (3 + 3) matrix of the form

. WAS —q) . WAE - qy)
D 1© —1€e
1 1
— . 39 . -9
P i (17b)
1 1
. mfu!fv P Mfwlnuv
ie —1e Ps

possessing the 3 conserved quantities
I=TrL=p, +p,+Pps,
1

L=-TtL*=
2

31— 4y)

P2+ pip)+e9T T 40T,

N | —

1 1 _
L= Tl =@l +pi+ )+ @y +po)e "
+ (g + P 4 (s 4+ p)e® Y, (18)

which are clearly independent. They are polynomials of first, second and third
degree in the momenta p, where I, represents the total linear momentum due to
translational invariance, I, is just the total energy H, while /; has no “‘evident”
interpretation. They are not uniquely determined because instead of I, we can
use a more elegant form, containing only differences in momenta and coordina-

tes [2]
, 1
= mQ_ + p, = 2p) (P, + p3 — 2p) (03 + py — 2p)
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- Q_ +p— N\Jvm:: T QN +p;— Nh_vm::xﬁv
. -y +p - 2p,) e l:w (18%)
being related with the 7, in the following way

Iy = =35+ 2LI — WNW (19)

All the conserved quantities are in involution

AN:V Niv = Ou n,m= ~u N. w.

This mmﬁosm:mam clearly the advantage of the matrix representation of the
system in comparison with the Hamiltonian formulation, because with the
oo:m:_ho:.omﬂ of the matrix Litisa straightforward procedure to get the conser-
ved quantities. The essential point is that the nondiagonal matrix elements of L
are Eono:_o:m_ to the square root of the potential, which are such an essential
Emnoa_.ni of the conserved quantity. This fact is not obvious in the Hamiltonian
formalism.

If the .z:chn f'is arbitrary, then the independent conserved quantities are
polynomials of degrees 1 to /. the coefficients containing powers of the square
root of the potential. They are listed here in a convenient form [4]

N_HMF: \NHMAwhm.*.osﬁ:tv HE
& k \2

1

bH MAwPu +€>. +P+_v05|$+:v

_
I = M@R + P+ pupiy + PRy )BT 4 W%sﬂf; +

+ 0@»&»+203»+_I§+uvv

I

k\n

ouMﬁSﬁ...v I<n</f. (20

,;n.no is at the moment no interpretation of those polynomials of the momenta
having a degree higher than 2. So far there are only variational principles used
where the Wmmoﬂ:& functions are polynomials of second degree in the 5030:6,
The question is now, as regards integrable systems, what will be the mosonmm
structure of the conserved quantities which are in involution, how can _Em% be

::anamaa and used to derive new variational principles to characterize these
systems.
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II. 3. Interaction among all particles

Now we shall consider systems, where all particles are interacting with each
other. Then it is preferable to take a matrix with the elements

L;=p, N\..,\.HE_.\. G#pi,j=1..1, (21a)
where the v; are real odd functions of the type
v; = v(g; — q,) with v(g; — q;) + v(g; — q;) = 0. (21b)
The relation to the Hamiltonian is again given by the simple relation
1
EHM‘TFNHMlﬁw+MSWHN,+ v, (22a)
2 ¥ 2 i>j
the first term being the kinetic energy while the second is the interaction energy
!
g = Y vigi—9g) (22b)

i>j=1
For the equation of motion (7) we need the matrix A, containing now f2
elements. They will be chosen in such a way that the f* equations of motion (7)
shall be compatible with the 2/ Hamiltonian equations (14). After a lengthy
calculation [5], [6] we end up with a functional equation which the admitted
interaction potentials have to obey. It can be written in the form

1 V(g) Vi(q)

1(Q) V(Q) =0, (23)

1Vg+Q)-Vig+Q
where g and Q are independent sets of coordinates.
This relation is, however, identical with the addition theorem for the Weierstrafl
s-function meaning

(q) = f(q; w, w), (24)

where £ is a doubly periodic function and w and w’ are connected with the
periods [7]. So we come to the important statement that all interaction potentials
which obey the addition theorem of the Weierstrall 4 function lead us to
integrable many-body systems.

II. 4. Survey of integrable many-body systems

It is worthwhile to survey integrable systems of an arbitrary number of
degrees of freedom which can be derived from the fundamental condition that
the time evolution is given by a similarity transformation (4).
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1. In the case of an interaction between next neighbours only, the potential has
the form

s
Mg, ...q) =Y Vg, — 9i+1) with V(g) = e“: Toda system, 25)
i=1
where ¢ is a real parameter.
1. In the class of rational functions for V(q) there are

2 . 2
Mg q)= Y —2 e Mg) =2 Calogero.
2 = ) (q) QN. alogero-Moser system (26)

.m.qa 140} = a*q®, the harmonic coupling, where a is a real parameter.
. Looking at the class of simply periodic functions possible ¥(g) are:

a*fsin’cq, a*cot’cq, a’/sinh’cq, a*coth’eq. 27

iv. Admitting doubly periodic functions with module k, 0 = k < I, we have
e.g., for V(q): ‘ u

a*/sn’(cq, k), a’*cn¥(cq, k)/sn’(cq, k), a’dn’(cq, k)/sn’(cq, k), (28)
a*cn’(cq, k)/sn’(cq, k)dnX(cq, k), a’en’*(cq, k)dn¥(cq, k)/sn*(cq, k),
a*dn’(cq, k)/sn*(cq, k)cn*(cq, k),

.irnno sn(x, k), cn(x, k), dn(x, k) are the Jacobian elliptic functions [8], which
in :ﬂ case of a vanishing modulus, approach sin x, cos x and 1. These elliptic
functions can be used to approximate a wide class of potential shapes by varying
.z._m modulus k from 0 to 1. It is worthwhile to study in more detail these
Integrable systems and their applications in statistical and quantum physics
because they admit now exact statements for many-body systems with %:E:m

Interaction, which is of great importance, since no perturbation theoretical
methods need to be involved [4].

INI. INTEGRABLE FIELD EQUATIONS

Z.o:::nmn evolution and wave equations play nowadays a very important
role in many different fields of physics. Because of nonlinearity the standard
309.0% of the linear field theory for solving field equations exactly or ap-
proximately cannot usually be applied. Surprisingly, however, in the last

10—20 years it was possible to develop methods to treat certain classes of nl. .

oNoE:o:. and wave equations in (1 + I)-dimensions systematically. Very often
the oncm:o.sm are om_._ma. “soliton equations”, because they admit solitary waves
[9] as solutions. Again it has become customary to divide nonlinear field equa-
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tions into socalled “integrable” and “nonintegrable™ partial differential equa-
tions, i.e. to consider them as an extension of integrable systems with an infinite
number of degrees of freedom. The question naturally arises, how such an
extension will be formulated and what the analogies are between the integrable
systems with a finite and an infinite order.

So far no rigorous definition could be given to characterize an ““integrable
partial differential equation”, but a number of conditions evolved describing
such systems. They can be formulated for partial differential equations in
(1 + 1)-dimensions in the following way:

i. Existence of solitary solutions.

ii. Existence of an infinite number of conservation laws.

iii. Existence of a set of nonlinear superposition functions.

These conditions require already a certain knowledge of the solutions of the
equations, so there are no criteria which can be applied “beforehand” to decide
about integrability. The existence of solitary solutions means that localized
stable excitations can propagate through the system without any deformations,
which are asymptotically constant. If the two asymptotical values are identical,
they are called “bell shaped”, otherwise “kink shaped”. These solutions have
more or less a particle-like behaviour [9]. Because these systems are considered
as an extension of a finite-dimensional case, they have an infinite number of
conservation equations. But so far nothing has been found that they are “com-
plete” or “independent”, i.e. no extension of the notion of “in involution” or
“complete” is proposed. Most important is the condition iii., requiring to
formulate the combination of two or more solitary excitations leading to the
“nonlinear superposition principle”. The nl. superposition means a dramatic
change with respect to the linear superposition.

While the linear superposition can be formulated quite generally, meaning that
a sum of two solutions or excitations is again a solution independent of the type
of the equation and form of the solution, this is not at all the case for nl.
superosition. There may occur different superpositions depending on the type of
the equation and of the form of the excitation. Looking at solitary waves there
may occur an elastic scattering leading to “solitons” or inelastic processes,
where additional solitary excitations and decaying wave tracks may appear.
Now the concept has arisen that in integrable evolution and wave equations
only an elastic scattering of solitary waves occurs leading to N-soliton solutions.
The existence of N-soliton solutions is connected with the infinite number of
conservation laws [10]. A certain class of integrable evolution and wave equa-
tions in (1 + 1)-dimensions exists but no general idea analogous to (4) has yet

been found. Extensively studied are the Korteweg-de Vries equation [9]
3
wm+cm|m+§®mm+®@lcu, - (29)
ot 0x dx ox?
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and its modifications and hierarchies,
the sine-Gordon equation

— ————+sinkU =0, (30)

and its modifications and hierarchies and
the nl. parabolic equation (misleadingly called “nl. Schrédinger equation™)

.oU oU
i——b—+ c|UPU = :
o ‘9m+q_ PU=0 €)))

and its hierarchies.
All admit solitary waves of the form

U= U(x — ), (32)

,irma visa Umnmamﬂmw representing the velocity of the excitation [9]. Many other
M:nm.nwc_o field equations are found and discussed [11]. An infinite number of
ensities D, (U) and flows F,(U) can be constructed in the way obeying

oD
., OF,
ot Ox

=0, n=1,2... (33)

providing us with the required infinite number of conservation laws. For all
these nncmcwzm the Cauchy problem can be solved with the “method of spectral
:m:mmoamcosz (MST), which is an extension of the method of the Fourier
transformation to nl. partial differential equations [12]. Sometimes the state-
ments are reversed by saying that if the Cauchy problem for a nl. field equation
can cw mo._<.na with the help of the method of spectral transformation, then the
€quation is integrable. But how does one know beforehand that this method can
be applied to the equation?

The ommmjmm_ properties of nl. field equations seem to be connected with the
5_.. Superposition principle. As a first orientation it is of great value to search e.g
iw:_ the help of computer experiments, if an elastic scattering of solitary €m<nmv
.eS: show up [11]. If it does not occur, it is an indication that the equation is'not
::om.;:u_o. A more conclusive argument is to look for an analytic formulation
of .Emrmn solitary excitations which are more complicated than the standard
solitary waves of the form (32). If it can be found, then one can write the
so-called :Z..wo_:o:: solutions, incorporating a very special but interesting rule
of superposition. Here a correlation matrix (K;) plays a fundamental role being
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constructed from one-soliton solutions. Let us start with the sine-Gordon
equation, where the N-soliton solution can be written in the form
1 & o

cosU(x,t;1 ... N)=1-— NA|||I v_saoﬁ K.), 34
v h.N @\N @.Km A ,\v A v

where the elements of the correlation matrix are given by

K. = 2 cosh MAN_, + z), (35)

¥
a;+ q; 2

with
]

N
TV PR | A,
1 + v;/c’ c

where v, is the velocity of the ith soliton (v; # v;) and x,, is some constant. In the
case of the KdV equation (29) the N-soliton solution looks similar

2
Ulx, 151 ... N) = —2 2 Indet (K,) (36)
ox?
with
1/2
g C..7L7) K- T (ko + e )x — 206 + kD)t + i (37)
"tk L2

where k; is the wave number of the ith soliton and B; are some constants. So the
elements K are constructed out of the ith and jth solitary wave representing in
some way the correlation between these two. Let us assume for the moment that
the correlation between the different excitations should be negligible, meaning
that the correlation matrix becomes diagonal

K;— KPS,

i

then the determinant of the K is the product of the K? and we obtain finally

Indet (K;;) = In IK? - M InK?, (38)

i=1

which resembles the linear superposition law, saying that a certain combination
of N weakly interacting solitary waves gives a higher wave excitation. Looking
now at the so far known N-soliton solutions, they are all governed by the

expression
Indet (Kj;), 39
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which might therefore be interpreted as a rather general nl. superposition rule
for solitary waves in integrable nl. evolution and wave equations in (1 + 1)-di-
mensions. An extension to higher dimensions is very problematic, because up to
now it is not clear what the solitary excitations in two or more space dimesions
are hence all investigations about integrability in this case become very specula-
tive.

IV. CONCLUSIONS

In the first moment it seems to be a very formal aspect to divide nl. differential
equations, representing physical problems, into integrable and nonintegrable
systems. However, the corresponding investigation leads us to a deeper under-
standing of the conditions of integrability and provided us with a prescription
for constructing a great variety of such systems from fundamental principles. In
the case of Hamiltonian systems with a finite degree of freedom it was demon-
strated how the condition of the time evolution (4) of the corresponding matrix
guided us directly to the conserved quantities, which are the backbone of such
systems providing us with the action-angle-variables permitting to write down
the formal solutions. In the case of nl. field equations the infinte number of
conservation equations is a plausible extension, but the essential features seem
to be incorporated in the nl. superposition principle, representing a dramatic
change with respect to the linear case. Now two- different excitations can no
longer propagate independently through the system but certain correlations
appear, being represented by the correlation matrix (Kj) or equivalently by nl.
superposition functions. It is now necessary that they exhibit properties which
can be interpreted as the elastic scattering of solitary excitations, but a list of
properties determining fully integrable systems is still lacking. Since integrable
Systems permit exact statements they are a very important tool for statistical and
quantum physics. They allow us to study nonlinear models having a manageable
thermodynamical and quantum mechanical treatment, ¢.g., soliton gas or a
quantum Toda system [4].
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BAXKHOCTb UHTETPUPOBATEJIbHBIX CUCTEM

B pa6ote usyuarorcs MHTErpHPOBATEITLHbIC CHCTEMBI KIIACCHYECKON MEXAHHKH 1 HeNUHEHHOK
Teopuu nons. IToxazano, uro cmemudmueckue MpOGIEMBI KIACCHYECKON MeXaHUKH nperuMyiiec-
TBCHHO XapaKTepH3yeT 3aMeHa raMMJILTOHHAHA Matpuue (f x f), rae f — wmcno creneneii cso-
6oner. Ecnu Bpemennoe Pa3BUTHE NlaeTCH ¢ nonobHOM TpaHchopMmaumedt, cuctema 6yner unre-
Tpuporarenbolt. CoxpaneHue KOTMYECTBA IOABMTCH TOTAA B $opMe uuBapuanTa MaTpuus. B
Cly4ac BIAHMONCHCTBUA BCEX HACTMI MEXTY CoBoi TIOKA3aHO, 4TO TakHe CHCTEMBI GymyT Toxe
HHTETPHDOBATE/TBHbIE, T1E OTEHUHAL B3aHMOJIEACTBUS 0GOCHOBAK Ha jonosuuTensHoM dopmyne
# ynxuun Balfepurpacca. B CryHae HETMHEHHON IBOTIOMH ¥ BOTHOBLIX yPABHEHHI ¢ pa3Mepamu
(1 x 1) ycnoue unterpuposatenshoctn u3ydaercs. IokasaHo, 4To npasuio Henuueiitoi cynep-
TIO3HIMH HIPACT BAXHYIO POJIb. B HHTETpanbHBIX CUCTEMAX 06CEHOBaHbI TOJBKO yIIpyroe pacces-
HHE H BOJIHBI COJTUTOHOB.
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