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FINITE SIZE SCALING TEST OF DECONFINEMENT
IN SU(2) LATTICE GAUGE THEORY')

AVERCHENKOV, V. A.}%) MOGILEVSKY, 0. A..%) Kiev

The behaviour of the order parameter (Polyakov loop) on a 8° x 4, 12° x 4 and
18’ x 4 lattices is investigated by the finite size scaling method. The deconfinement
temperature and the critical exponent for the order parameter are calculated. The
obtained value of the critical exponent for the order parameter is in very good
egreement with those in the three-dimensional Ising model.

L. INTRODUCTION

Lattice calculations by the Monte Carlo (MC) method have so far been the
only method for studying temperature phase transitions in gauge theories from
the first principles. By their nature, MC calculations are carried out on finite
lattices. This is the most serious drawback of a computer simulation approach
to the study of critical phenomena, because no finite system with non-singular
Lagrangean can exibit a true phase transition. Nevertheless, finite systems
remind of phase transitions, and systematic studies of these pseudo-transitions
as functions of system size may reveal information about the phase transition
in the thermodynamic limit. One way to do this particularly in order to evaluate
the critical exponents of the theory, is to use finite size scaling.

The finite size scaling theory has been developed by Ferdinand and
Fisher [1] (see also [2——3]) for critical phenomena in spin systems. The val-
idity of this approach has been demonstrated through extensive MC simulations
on two- and three-dimensional Ising models (see, for example [4]). In this paper,
the SU(2) lattice gauge theory is under consideration. MC data for the order
parameter (Polyakov loop) are analysed on the lattices 8 x 4, 12* x 4 and
18° x 4 by the finite size scaling method. The thermodynamic limit values of the
critical exponent B for the order parameter and of the deconfinement tem-
perature 7, are presented. The value of B is in excellent agreement with the
values of the three-dimensional Ising model.
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IL FINITE SIZE SCALING METHOD

The partition function for the (3 + 1)-dimensional SU(2) gauge theory on an
N] x N, lattice is defined as
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where U, , are the SU(2) matrices on the links (4, v), S is the Wilson action
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here U, is the product of link matrices around a plaquette. The temperature T
is defined as an inverse size of the lattice in the timelike direction T = 1 {N.a(a
is a lattice spacing). In the weak coupling limit one can use the renormalization
group relation

27?51 2472 v
ag?) = - exp W -~ T _:A awvw. 3)
AL g 121 \llg
The Polyakov loop at the spatial position n is defined as
1
L,= M‘—xﬂ : Qﬂ?o, 4)
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where U, , , is the SU(2) link matrix at point (n, 7) in the timelike direction. The
deconfining phase transition of the SU(2) lattice gauge theory signifies a spon-
taneous breakdown of a global Z, symmetry of the effective theory, which can
be obtained from the partition function (1) by integrations on all links variables
except those for the Polyakov loop. The expectation value (L) of the Polyakov
loop is the corresponding order parameter, which is zero in the confinement
phase but is finite in the deconfinement phase. The “temperature” of the
effective theory (which is defined in the same spatial volume V = (N,a)? as the
underlying SU(2) gauge theory) is just the gauge theory coupling g?/4.

For a lattice of the infinite spatial size the order parameter (L) in the vicinity
of the critical point g?/4 must behave as follows:
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where f is the critical exponent of the order parameter. According to the
iniversality conjecture [5], the SU(2) lattice gauge theory in (3 + 1)-dimensions
should have the same critical exponents as the three-dimensional Ising model,
where f is evaluated to be 0.3265 + 0.0025 [6].
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In some recent papers [7-—12] the critical exponent 8 of SU(2) order par-
ameter has been calculated. MC simulations were made on lattices of various
sizesN, =7+ 18, N, =3 + 5. The value of fvaries from f = 0.207 on a lattice
7' x 3[7] to B = 0.409 on a lattice 18 x 5 {10]. This discrepancy originates from
the fact that a finite lattice cannot, rigorously speaking, undergo a true phase
transition. The finite size effects are too large in the very :ervoc}.coa of the
pseudo-transition point, and the critical parameters can only aproximately be
determined on a finite lattice. .

In order to eliminate the finite size effects we use the finite size mom__.sm
method, which is extremely useful to guide the extrapolation of MC finite lattice
data to the thermodynamic limit. Consider the SU(2) gauge theoryona N} x N,
lattices for various N, and N, fix. According to the finite size scaling theory .Eu
the free energy of a finite gauge system is given by the homogeneous function
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where o and v are the critical exponents pertaining to the specific heat mmm to
the correlation length, respectively. F'is a scaling function of the scale variable
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with g?*/4 = g?(N, = 0)/4. The critical

coupling g2(N_)/4 for a lattice of size N, differs from g?*/4 in the following way
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From (6) the scaling properties of the SU(2) order parameter may be derived
<Ky = N;P"M@UN,}"). ()

In the limit N,—oc, t -0 (8) has to reduce to the infinite m%m@: mmcmc.r:
behaviour (5), and therefore, in this limit the order parameter scaling function
1s given by

(N, ~ [Ny P, ©

.: must be emphasized that the critical exponents in (6)—(9) correspond to the
thermodynamic limit.

104

HI. NUMERICAL RESULTS

To evalute the critical exponent f we have performed MC simulation on
lattices of size 8’ x 4 and 12° x 4. Our MC data were obtained from SUQ)
Metropolis programm after 1000 sweeps for thermalization. In general we

performed 10000 sweeps per point. We used also the high precision data on a
18’ x 4 lattice from Ref. [10].

We have performed a fit of MC points with the functional form.
0.5
) (10)
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where 4, B and Wv B are free parameters. A correction of the leading term (the
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Wegner finite size correction term) is known from the Ising model. This term has
to be included in the fit, because the range of validity of the leading term
approximation is not known.

Table 1
Parameters of the fit (10) of (L> on N2 x 4 lattices (N, =8, 12, 18)
4 4 2
N, = = B A B X
g 8. N
8 2.29—-2.65 2.262(05) 0.499(38) 1.324(29) -0.375(24) 1.048
2.29--2.70 2.264(07) 0.462(75) 1.141(14) —0.313(20) 1.013
12 2.29—-2.90 2.281(02) 0.424(33) 1.028(15) —0.151(06) 1.920
2.30—2.60 2.283(05) 0.490(83) 1.366(23) —-0.176(11) 1.200
18 2.301—2.450 2.294(03) 0.412(57) 1.331(32) —0.139(09) 0.960
2.305—2.475 2.264(03) 0.382(53) 1.064(09) —0.106(06) 1.140
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Fig. 1. Order parameter (L) on 8 x 4 (@),
12° x 4 (A) and 18° x 4 (o) lattices versus in- S
. 00!
verse “temperature” MN The solid lines are the
g 4
best fits of (L) according to eq. (10). 235 230 235 g
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The average Polyakov loops (L) on lattices 8* x 4.12° x 4 and 18" x 4 are
shown in Fig. 1. Results of our fits are given in Table 1.

It follows from Table 1 that the parameters g’/4 and B on a single lattice are
strongly correlated —— a slight change in g2/4 leads to a relatively large change
in B. The values obtained for Bare far from the expected value § = 0.326, (which
is) known from the Ising model. The errors in 8 from MC data are of the order
10%—15%. The parameters B are of the same order as the leading term
amplitudes A. This means that finite size effects are relatively large even on the
18% x x 4 lattice. We conclude that MC data for the order parameter (L) on
a single lattice do not really lead to a conclusive determination of the critical
exponent £.

In order to calculate the value of Bby the finite size scaling method the scaling
function M(tN'") = NP"(L) has been constructed assuming the Ising value of
the correlation length exponent, v = 0.63 [4]. We considered two sets of MC
data from N} x 4 lattices: N, = 8,18 and N, = 12,18. As for the order par-
ameter we have used a two-term fit form:

M(X) = AXP( + BIX™), (11)

where X = tNY". Results of our fits are given in Tables 2 and 3. The MC data
were considered for several initial points in both sets. Contrary to Table 1, the
values of the parameters are independent of the initial points. The expected
value for the critical exponent 8 = 0.326 is very well compatible with MC data
for N, = 12,18, but this is not the case for N, = 8,18. It appears from this that
only lattices with N_ > 12 are well inside the finite size scaling region described
by eq. (6).

We conclude that MC data for the order parameter on a lattice with N, > 12
can be accurately described by a single scaling function M(X). In Fig. 2 this
function is shown together with MC data on 12° x 4 and a 18’ x 4 lattice. The
parameters of M(X)) are presented in Table 3. It should be noted that the
amplitude B of the correction term in (11) is negligibly small as compared to the
amplitude of the leading term. This means that the behaviour of the scaling
function can be represented by an infinite system form

MX) = A|X)". (12)
The main results of our calculations is the determination of the deconfine-

ment phase transition parameters g2/4 and . From Table 3 and formula (3) the
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Table 2
Scaling function parameters according to the fit (11) for MC data on lattices 8° x 4 and 18° x 4.
4 4 2
Ny = -3 p A B A
g 8 N
8 2.320—2.700
18 2.320—2.475 2.294(03) 0.292(07) 0.668(06) 0.004(03) 1.83
8 2.400—2.700
18 2.330—2.475 2.296(03) 0.288(11) 0.664(06) 0.003(03) 1.58
8 2.350—2.700
18 2.340—2.475 2.296(03) 0.288(11) 0.663(06) 0.004(03) 1.66
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Fig. 2. Scaling function M(X) for MC data on
a 12’ x 4 () and a 18’ x 4 lattice. 1 1 I x
0 2 4 6
Table 3
Scaling function parameters according to the fit (11) for lattices 12* x 4 and 18° x 4.
4 4 2
N, - L B A B .
g 8¢ ) N
12 2.320—2.900
18 23152 475 2.297(02) 0.317(09) 0.749(08) —0.007(03) 2.70
2.330-—2.900
12 2.305—2 475 2.295(01) 0.320(08) 0.751(08) —0.007(03) 2.17
12 2.340—2.900
18 2.308—2.475 2.295(02) 0.321(09) 0.757(09) —0.009(03) 2.21

decondinement temperature can be easily found
—£=419+02 13)

which in physical units corresponds to 7, = (209.5 + 1) MeV (A, = 5 MeV for
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the SU(2) group). The value of f presented in Table 3 is in excellent agreement
with the critical exponent 8 = 0.326 for magnetization in the three-dimensional
Ising model, in accordance with the universality hypothesis.

The finite size scaling method thus proved extremely useful in the calculations
of the critical exponent for the order parameter in the SU(2) lattice gauge
theory. The next problem is to apply this method to the calculations of the
critical exponents for the specific heat and susceptibility. Such calculations will
finally solve the problem of the validity of the universality hypothesis.
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NCCIAEAJOBAHUE AEKOH®AMHMEHTA B SU(2) KAJIMBPOBOUYHOM
TEOPUMU HA PEMIETKE METOAOM KOHEYHOPA3ZMEPHOI'O CKEMJIMHT A

Tlosenenne napamerpa nopsaaxa (netns IMonskosa) Ha pewerkax 8 x 4, 12° x4 u 18° x 4
HMCCNEAYETCA METONOM KOHEUHOPA3MEPHOTO ckeHnuHra. Berumnciena Temmepatypa nexoHdaiiu-
MEHTA M KpUTHHYECKas IKCTIOHEHTA mapameTpa mopsaka. [lonyvennoe 3uauemme KpuTHYeckofi
3KCHOHCHTBI XOPOLLIO COIJIACYeTCs C TPeXMEPHON Moaenbio Mauara.
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