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THE POSSIBILITY OF LOCALIZED BAGLIKE
EXCITATIONS IN HIGH T, SUPERCONDUCTORS
DUE TO THE LOW DIMENSIONALITY OF THE

ELECTRON STATES

TAKACS, S.,") Bratislava

The conditions are determined under which the localized moreparticle baglike
excitations in two- and one-dimensional fermion systems can be below the BCS
excitations. It is shown that in the twodimensional systems the bags can exist when
the characteristic value of the bag potential is comparable with the energy gap, but
no more when this potential is determined by the Fermi energy. The bags are always
energetically favourable in the one-dimensional fermion system.

It is suggested that the energy changes of the bags by changing the number of the
included quasiparticles can be connected with the resonances in the tunnelling charac-
teristics of high T superconductors. In the two-dimensional bags, these values are
comparable with the experimental results for the voltage steps in the tunnelling
current (~ 40 mV), whereas in the one-dimensional system these energy changes are
always smaller than the energy gap. The Coulomb term due to the quasiparticle
localization was also included into the free energy, but the equilibrium quasiparticle
number could not be calculated.

It is emphasized that the existence of the localized bags can influence the electro-
magnetic, as well as the thermodynamic properties of high T, superconductors.

I. INTRODUCTION

The discovery of high 7, superconductors [1, 2] has renewed the interest in
many fields of superconductivity research. Basic theoretical mechanism -—
including some hypothetical and very exotic ones-are studied extensively. The
semi-phenomenological Ginzburg-Landau theory of superconductivity and its
extensions should be modified due to the very small value of the coherence
length, too [3, 4]. The phenomenological theories of current carrying mechanism
in high T, superconductors (based partially on the Ginzburg-Landau theory
including the Josephson effects, etc.) are numerous with very different approach-
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mw (see, e.g. Rmm:w:no.m [5] and the literature cited therein). The technological
e ﬂim to ovSS._uBo:omzw usable conductors with high critical current densities
i high magnetic fields are carried out in the expectation of R<o_=:.o:mQ

changes for many techp; o
society. ¥ technical branches and the whole socia] life of the (human)

perature T,

,;.o €nergy gap is manifested in various properties of superconductors (in-
830:0.: eS.E n_oo?.oammcmzo radiation, acoustic waves, etc., thermodynamic
properties like specific heat and thermal conductivity, tunnelling currents in-

Interesting and most precise measurements of the value of the energy gap,

including its temperature dependence.
In addition to the usual structures in the tunnelling characteristics (i.e. mainly

than the one-particle excitations of the BCS theory [6].
The existence of the localized baglike excitations could be important not only
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IL THE BAGLIKE EXCITATIONS IN THE TWO-DIMENSIONAL
AND ONE-DIMENSIONAL FERMION GAS

The importance of the baglike excitations for high T, superconductors was
introduced by Weinstein [12] who suggested that the bags (localized in the
sphere of radius R in contradiction to the unlocalized BCS excitations) could
explain the double or triple peaks in some tunnelling measurements of high T,
superconductors. His basic result was that the two-particle bag has a lower free
energy than the sum of two one-particle bags. Therefore, both excited particles
should form a bound state. The calculations were extended to more-particle
states of the bags [10]. The results showed that the energy of the baglike
excitations is always larger than the energy of the (non-localized plane-wave
fermion) BCS excitations (besides a very strong coupling between the fermions)
with an equal number of excited quasiparticles. Nevertheless, the energy chan-
ges by changing the number of the involved quasiparticles in the bag was
approximately the same as the experimental results for the resonance voltage
steps, i.e. about 40 meV [7, 8]. Therefore, we suggested that there could be some
mechanisms which should favour the existence of the bags [10, 11]: the periodic
structure of the bags, the surface contribution to their free energy, the anisotrop-
ic properties and the low carrier concentration in the known high 7, supercon-
ductors, and — last but not least — the low-dimensionality of the electronic
structure, connected with the Cu-O planes and possibly also chains in high 7,
superconductors.

The general solution of the problem is difficult. Like in the BCS theory, one
should treat it selfconsistently, including the spatial variation of the order
parameter near the bag. Attempts were made to replace this selfconsistency
problem by including surface energy terms (which is from the “transition
region” between the superconducting and the normal parts) into the free energy
in the three-dimensional problem [12].

As we are interested here mainly in the estimation of bag energies and their
changes by changing the number of included quasiparticles, we suppose in the
following that the order parameter decreases to zero in the localization region
and is unchanged outside this region. This treatment is also quantitatively good
for localization radii R > &, as the coherence length is determining the distance
of spatial change of the order parameter. The generalization of our solution is
possible by including a surface contribution to the free energy, too. Such
generalization is unambiguously needed for calculations of the most favourable
number of quasiparticles in the bag. For making quantitative statements, a
selfconsistent solution is required.

Since the quasiparticle excitations are charged particles, their localization
contributes also to the Coulomb energy of the bags. This problem is briefly
discussed in the Discussion.
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and the one-dimensional case.
The energy levels in the potential U = g/(r/R)* are given by

E,=2(2)", h(g)"
2= NSV A=_+_+N3+cnlAlv 2(n+ 1),

kws

& _\N

=) e
! xANS (@n +1),

in the two-dimensional and the one
expressions, n, n,, n, = 0,1,2, ...

The quantities needed for determining the ener

f more — particle st
of the bags can be calculated — j £y of more — particle states
relatively easily [10, 11). In analogy to the three-dimensional case —

NQ,,\_,HQ%MMGMM, om Mﬂam. (including degeneracy) at the level N is given by

: or the isotropic two-di i -di i

ic onsillter e p O-dimensional and one-dimensional harmon-

NQ,,\EE _ooozummos number up to the level N is then M=(N+2)(N+1)and
+ 1) and the sum of the total energy of states filled up to this level (in units

f 2) is I =
w. (/R (q/2m)'?) is L = 2N + 1)(N + 2)(2N +3)/3 and 2(N + 1)? (see table

-dimensional cases, respectively. In these

The total energy of the bag is then [10, 12]

2 1/2
E=mOy A (L),
4 R\m/

where V, = 4R? and Vi = 2R are the

Wm%.m (i.e. square and _oam.an of size 2R, like the cube or sphere with localization
adius R in the three-dimensional case [10, 12]). The two-dimensional and

one-dimensional densities of state
neC S, V;, are supposed to be i
vicinity of the Fermi energy, E, = &N.\aw\ws wm nearly constantin the

spaces” needed for the existence of the
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Table 1

Some parameters of the isotropic two-dimensional (24) and one-dimensional (1d) harmonic oscilla-
tor.

E Number Zoﬁcjmhm Value of L | Minimum value of
Level nergy P at filling LM LM
at the of states at N A
number ; the n-th Just at filling
level n states filling the
levzl the n-th level
n-th level
n 2d d | 2 Id | 2d d | 2d | 1d 2d id
0 2 1 2 2 2 2 4 2 | 126 12
0 2 1 2 2 2 2 4 2] 126 122
1 4 3 4 2 6 4 20 8 | 123 12
2 6 5 6 | 2 12 6 56 | 18 | 1.22 132
3 8 7 8 2 20 8 | 120 32| 1216 12
4 10 9 10 2 30 10 | 20| s0 | 1215 172
5 12 1 12 2 42 12 | 364 | 72| 1214 | 142
6 14 13 14 2 56 14 | 560 | 98 | 1213 | 142
7 16 15 16 2 72 16 | 816 | 128 | 12128 | 142
8 18 17 18 2 90 18 | 1140 | 162 | 12125 | 12
© 12114 | 142

The localization radius R of the bag is obtained in both cases from the
equilibrium condition

This condition leads to the following relations for the two-dimensional (2d) and
the one-dimensional (1d) case:

172
d) anmulﬁ?v L,

mA* \2m
1%k [ g \"
A v 1 SN—N o'm !

The total energy of the bags is then
1

3 q NVE
W)  EB={==L) 4
@4) 2 NAN‘E :

1 12 q /4
=A{—L,} {Z) .
Ca.v m_ Ama. v Amwv
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ﬁ.:n or.o_om of the value of q is of principal importance. Some arguments were
given in paper [10] in favour of g9 = 4, whereas g = E, was chosen by
in_smﬁo_.: [12]. As for the three-dimensional case [10, 11], both possibilities
are taken into account in oyr further considerations.

To see the conditions for the realization of the bags in the two-dimensional
and the one-dimensional case, one has to compare their energy with the energy
of 9.0 corresponding BCS excitations with the same number of the included
quasiparticles M. For the bags to be energetically favourable, there should be

E < MA.
These conditions lead to
3
2d) 9_ E .ﬁ,
4 27 12
4
(1d) 4q_ 42 k ;
mﬁ qu —

The <m_=n.0m L is changing sligthly by adding a state to the already occupied
level, but it changes much more at the beginning of the occupation of a new
level. Just at filling the Nth level, we have

(2d) Rnw NV + 1)*(N + 2)° _IWN+HWV+2)
L 4WN+1P(N+2PQN+37 16 Az+uv~ B

2

oﬁ 1 -1
16 §+_§+L ’

M? 4N+ >
L 2N+1p

2

energy level N + 1:

(2d) RH E<+:Q<+Nv+% NT N+ 1 g
5 _

L’ 2
TQ<+ c@+8@2+&+2+¢ _
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The differences between the values for different N, as well as between the
maximum and minimum values are not changing very much (see fig. 1), we can

therefore use their limiting values

n~T+

A — e

X%

Fig. 1. The results for the maximu (just at filling
the Nth level) and minimum (just after begin-
ning the new level N + 1) values of M3/L2 in the
two-dimensional bags (crosses x) and half of the
minimum values of M?/L (crosses +) for the
one-dimensional bags (the maximum just at fill- ! L L 1

ing an arbitrary level is equal 2). 0 1 2

Hence, the two conditions for the baglike excitations to be energetically favour-
able are given by

2d) = m ~ 1.05,

49
A
q

(1d) = 16n2,

E¢
Although the last inequality for the one-dimensional bags is valid for both
choices of the quantity ¢ (E; and A4, respectively), the condition for the two-
dimensional bags is fulfilled only just for ¢ = A, but no more for E /A< 1.05
of the second choice (g=Ep.
In our opinion [10], the choice of g = A is physically more relevant since by
adding one quasiparticle to the excited bag, we have to take it from the
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condensed state already present in the superconductor. This situation is quite
mm.nnw:ﬂ mn.oB the case when we had to add this quasiparticle to a system of other
ncmmﬁm:_o_ﬂ filled up to the Fermi energy. However, in the case when in spite
of the mentioned argument the value of g should be larger than 1.054 M:o
would need an additional mechanism for the existence of the go-&m:o:mwoam_
bags. Some of them were already suggested [10, 11], e.g. the periodic structure
of bags, surface contribution to the free energy, etc.

Ill. ENERGY STEPS OF THE BAGS IN CHANGING THE NUMBER OF
THE INVOLVED QUASIPARTICLES IN THE BAG

The energy of the oxo:oa. bags depends on the number of the quasiparticles
Mnmmn.wﬂ in the .cmm. The equilibrium number can change with the temperature
B: : it mms be Em:a:oo.a by structural and other types of fluctuations in the

m,%._:m , too. We o.cﬁ_: thus some quantized energy levels in the bags.
Qcmﬂowwﬂmrmsmom can influence the tunnelling chatacteristics of the supercon-

one can expect some resonance structures at volt i

to these energy differences. sges corresponding
- M,%o nw.o:nw vvmm,m rwroz_&u of course, interact with other fields (electromagnet-

» acoustic, etc.). The corresponding resonan i i
Sons o g ces should appear in these interac-
. .EMVM wanmw M\w«an@:onm at the transition of the bag from the state L, (with

mber M, =M + 1) to the neighbourin i i

: . g state L, (with particle

M, = M) are given in both cases by A P number

371\ 1/3 13
2d OE, =2 — 9 w3 _ _
) > NA?V u@ (&L nwuvlo.wiw Z,,

173 1/4
() E = AFV uAuﬁv @Li? - L} = o.KuAhviN
. Mﬁ mm. 12

Table 2

M”-n: “Mn”ﬂﬂon MM HAM.ME - L3P between two neighbouring states with changing the quasiparticle
el i ihe be M: . n__ I:N-S +1, gu.u M) for the isotropic two-dimensional quadratic potential
mEs, . g the energy @_a.nnnsoﬂm _un».io.n: two neighbouring states. The values before

g a given n:n.nmw level, as well as just after beginning a new energy level, are given (the vertical
marks between different L values mean the beginning of a new energy _o<n.c. i

L __M A_w... 16 Nc_wa...% &_%...:N _8_
z, : 093 148 102 14 1.07 1.36 1.09 1.33
130 ...210 220 _ 232...352 364 _ 378 ... w”
L1 131 1127 13 .. 12114
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Table 3

Analogous characteristic numbers to those in table 2 for the one-dimensional quadratic potential
well, Z, = L2 — L}, The vertical marks are again indicating the beginning of new energy levels

(they can be occupied by two quasiparticles only).

L [l 2|5 8|13 18 | 25 32|41 50 | 61
z | 1 082 059 077 063 075 0657 0746 0.668 0.74
72|85 ®[13 18 .. o
0675 0734 068 073 0.683 . 0.707
where

Z,=LP-IP, z,=LP-L"

The results for Z, and Z, for some L values are given in table 2 and table 3
in the two-dimensional and the one-dimensional case, respectively. One can see
immediately that the differences are again not very large by changing the
number of the quasiparticles in the bags, therefore one can use in the following

considerations their limiting values
’ 4 2/3
:B NN = Allv » ﬂma N_ = N|_\N.

M -0 3 M~

In this limiting case we then have

/3
d) OE,= u@.v ,

1/4
(1d) %_nc.umAhv )
Er

For comparing with the experimental results [7—9], we take as characteristic the
values for E = (0.2 — 1) eV, and suppose approximately 4 = 2k, T, ~ 16 meV.
The energy steps are then given by
\AN.wLK x~37—64meV forg=E,=02—1¢V,
(2d) JOE, = N
Ax 16 meV for g = A4,

; Vs 0.384 = 6 meV for g = Ep (otherwise
(1d) OFE, = N independent of E;),
(0.2 —-0.13)A =~ 3.2—2.1meV for g =A.

Whereas SE, is larger or comparable with the value of the energy gap, JE, is
always smaller than A.
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1V. DISCUSSION

. From the point of view of the existence of the baglike excitations, it is very
important that in the one-dimensional fermion gas these excitations m:o always
below the BCS type excitations (free plane-wave fermions). This is the case for
all g values h.vm the order of all physically meaningful parameters in the supercon-
.a:oﬁonm” This means also that no restriction should be made with respect to the
Interaction strength (weak coupling, strong coupling, very strong coupling)
between the quasiparticles leading to the condensed state.

On the other hand, this model cannot explain the experimentally measured
voltage steps for the resonances in the tunnelling characteristics (which are of
the o&mn. of 40 mV), because the theoretical values for the steps, obtained by the
energy differences of the bags by changing the number of the involved quas-
ﬁmmco_nmq are always smaller than the energy gap 4.

The situation is quite converse in the two-dimensional model. The energy of
the baglike excitations is nearly of the same order as of the BCS excitations for
q = 4, but .Hrow are no more energetically favourable by the choice ¢ = E,
.ﬂ.rmnowono, if the choice ¢ = E, would be “true” — in spite of the mnmcaa:m
given in paper [10] and in this paper — the existence of the baglike excitations
in the two-dimensional fermion system could be questionable. We believe that
all effects .m:mmnmnoa for the three -dimensional baglike excitations [10, 11] (the
mﬂnoz.m anisotropy of the energy gap leading to values comparable with the
Fermi energy at least in some directions, the periodic structure of the bags, the
surface contribution to the free energy, the small carrier concentration and mmsm:
value of the .ooraqomon length in high 7, superconductors) should facilitate their
appearence in the two-dimensional fermion systems, too. The inclusion of all
these effects into our model is possible, but could probably be a very difficult
task. Some model calculations are in preparation.

Oﬁ Eo.oﬁrn._. hand, the obtained energy steps for changing the number of the
acmm_nm:_.n_mm involved in the bag are in the range of the experimental results for
the steps E.En tunnelling characteristics of high T, superconductors.

The gm:w.n excitations should not be restricted to the BCS mechanism of the
mcﬁo.moo:acncii (original, as well as extended models with phonons and other
@:mm.ﬁm:_n_mmv, as already stated [10, 11]. They could appear in other supercon-

ductivity Eno.rmﬂ.:mam, too, e.g. in the bipolaronic model [13].

These excitations could play a role also in other properties of high T,
superconductors, mainly in the thermodynamic ones (thermal ooa\a:oaiJ\q
heat capacity). .
. On H:w,oﬁrmn hand, the resonance-like structures in the tunnelling characteris-
tics A.um :._m: I; superconductors could have another origin, too (geometrical
localization, band structure effects. interaction of the tunnelling particles with
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phonon and other structures, etc.), see, e.g., the references [8—11, 14] and the

literature cited therein.
Finally, we would like to mention the possible role of the Coulomb term in

the free energy of the bags. One has to consider such a term as the concentration
of the quasiparticles in the bag deviates from the mean concentration. This can
be done by including the term (M — n)’¢’/4ne R, where n is the number of
(paired and unpaired) quasiparticles with concentration r, in the localization

volume and ¢ the dielectric permittivity.

We suppose that the bags are not occupying a large volume of the supercon-
ductor (otherwise, their interaction should be considered, too), therefore the
mean concentration does not change considerably in the volume of the super-

conductor outside the bags.
The localization radius in the two-dimensional case is then given by the

following relation:

R = }Ahv:uﬁAhv:whw + Ag.l Rvumuu—:u.
7 \ma) L\am Ach

The energy of the bag is E, ~ R7, from which one can obtain a condition for the
most favourable number of quasiparticles in the bag. In the limiting case M > 1
(i.e. L, = 4M?*?[3), one has

R, ~ [AM*? + B(M — n)'"",
where A and B are constants. From dE,/dM = 0 we obtain
M+ (M—n)=0, 1)

where f = 34/4B = 0.04¢ and 0.012¢ for ¢ = E and A4, respectively.
The condition of minimum energy (1) can be fulfilled only for M < n, as
expected (A4 and B are positive). The quadratic equation (1) can be solved in the

form M(n) or n(M):
M=n .T\WN - A:\N +Nv:~“
2 4

n=M+fM"?= M1+ ffaM'?).

The latter form is more simple and more suitable for our further considerations.
One obtains in this way

E, ~ \_537 +

M\‘ N\u
AE_L .

In spite of the determining equation (1) for the deviation of the quasiparticle
density in the bag from the mean electron concentration, n — M = fM'? ~ fn i
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(due to £ < 1), we cannot give the exact number of quasiparticles in the bag (and

therefore the energy of the bag), because R, 1s a function of M and thus of n,
too. Only the inclusion of the “surface” term (or more precisely, the selfconsis-

tent calculation of M) should solve this problem. .

Nevertheless, for our purposes, i.e. the possible explanation of the resonances
in the tunnelling current, this is not very important, as the required quantities
Z, and Z, are not changing very much with changing M.

The full treatment of the problem would require a microscopic selfconsistent -

description [12, 16, 17], as the quasiparticle excitations “deform” the gap in their

immediate vicinity. The situation resembles the self-trapped polaron (see, e.g.

[18]). Numerical calculations lead to cigar- and star-shaped one-and two-
-particle bags within the gap. One should therefore expect that the moreparticle
bags will also be possible, because in the more-particle bags the gap deformation
takes place only in the transition region bag-condensate.

Attempts were made to replace the selfconsistency problem by including a
surface term into the free energy [12] from the transition region between the bag
and the condensate. The results did not change substantially. Nevertheless, we
believe that the inclusion of such a term (or, more precisely, the selfconsistent

calculation of the problem) is needed for the determination of the equilibrium .

number of quasiparticles in the bag. This should be very important for calculat-
ing the thermodynamic properties of superconductors in the presence of loc-
alized baglike excitations,
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O BO3MOXHOCTHU OHNPEAEJEHUS MEMWKOOBPA3HBIX BO3BYXAEHUI
B BBICOKOTEMIIEPATYPHBIX CBEPIIPOBOJHUKAX CYHIECT w%—OE:W
3A CYET HM3KOAMMEH3UOHAJBHOCTUDJIEKTPOHHBIX COCTOSHH

Onpenenens! yCIOBHA HPU KOTOPBIX JIOKAJIbHbIE MHOTOYACTHYHBIC ZoExoomumumrM %MMMMMM.
JeHHA B ABYX M OJHOMEPHBIX cucTeMax GpepMHOHOB JexaT Hixe BKII ww@ﬁhn::nzww I :o.nomu
4TO B IBYXMEPHEBIX CHCTEMAX MEIIKH CYILIECTBYIOT, €CITH XapAKTEPUCTHYECKAR BEIHYH L noten-
LHaJI MELIKA CPABHHMA C SHEPTeTHYCCKOH LIENbIO, HO HE MOTYT CYLIECTBOBATD, ECIH qﬂ Mg
ITHAT onpefiensieT sHeprus Pepmu. TakKe HAZO OTMETHTE, YTO MEILKH OKa3hIBAIOTCS JHED

Me (epMUOHOB.
KH BBITOJHLIMH B ONH:OZOH;—OS CHCTE! v
O.H.ﬂﬂ-*m.o:u«— YTO H3IMCHCHHSA 3HCPIrHH B MCILIKaX ¢ H3MCHCHHEM YHCNA BKJIIOYCHHBIX KBa3UYac
s

’ THU CBA3AHBI C PEIOHAHCAMH TYHEIMPYIOUIMX XapaKTEPHUCTHK BBICOKOTEMMNEPATYPHBIX CBEPX-

NpOBOAHUKOB. B cilyyae ABYXMEPHBIX MELIKOB 3TH BEJIMYHHBI CPABHHMBI C wxonn_us_smﬂwmwwwmﬂm
PE3yNILTATAMH CKa4Ka HATIPAXKEHUS TYHEIHHOrO TOKa (-~ A@ MB), xorzma B onmo_som Herene
3TH M3MEHEHHMS OKa3blBAIOTCA MEHbLIE umnu_da:aooxo_m menn. KynoHosckuil e ) OMr
ONpEAC/ICHHK KBAa3HYACTHIl TOXKE YYHTHIBAETCA B CBOOOAHOM 3HEPrHH, HO B v»ﬁ“ww:ﬂw v.”. roc
ONpEJENIUTh YHCIIO PABHOBECHBIX KBasuyacTul. Hago nmoauepkHyTs, uTo ozEnm.n S
HBIX MEMIKOB BIIHAET HAa OJICKTPOMATHHTHBIE M TEPMOAMHAMMYECKUE CBOMCTBA BEIC

NCPaTYPHBIX CBEPXIPOBOJAHHUKOB.
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