acta phys. slov. #1 (1991), No. 1

ON THE BOREL SUMMATION OF PERTURBATIVE
SERIES

PRESNAJDER, P..") KUBINEC, P.2) Bratislava

The method of the Borel summation of perturbative series is described in detail
and applied to the calculation of the ground state energy of an anharmonic oscillator.
We have found a good agreement with the results obtained by different methods.

1. INTRODUCTION

There is only a small number of problems in physics which are exactly
solvable. Most frequently approximative methods have to be used. Typical
examples of this type are the perturbative series in quantum mechanics (or in the
quantum field theory). There are defficulties with the perturbative expansions
when the perturbation is in a certain sense large.

As an example of such a situation we can take a harmonic oscillator with the
perturbation Ax*, which is “large” the respect to the harmonic potential x?/2.

The coefficients a, in the perturbative expansion ), a,A" of some quantity (e.g.
0

the ground state energy) are well defined but the expansion is the asymptotical
one being divergent for 1 # 0 and for a small A the first few terms in the
expansion give only a rough estimate of the quantity in question. The pertur-
bative expansion should be summed ina suitable generalized sense to extract the
non-trivial information contained in the coefficients a,.

The standard method of the resummability of some divergent series is the
Borel method based on the following observation. Let the formal expansion of
a function is given

EQ) = Ws\ﬁ (1)
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Instead of investigating the E(A) directly we can investigate its Borel transform
F(x) defined by the relation

EQ) = w. % e " F(x)dx, 1> 0. @)
0

The essence is that if E(A) is given by the formula (1), then for F(x) we have the
expansion

F(x) =) b,x", b,=a,/n!. (3)
0
This is a consequence of the equality
nl=A""" ,.‘. x"e ¥dx, A>0. 4
0

Evidently the convergence properties of the series (3) are better than those of the
original expansion (1).
As a simple example let us take the series

EQQ) = MT yas &)

which for || < 1 converges (to the function 1/(1 4+ 1)), whereas for |A] > 1 it is
divergent. How to find its sum, e.g., for 1 = 2? Using Egs. (1) to (4) for A > 0
we can write
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By interchanging the order of summation and integration we have used the fact
that the last series converges for every x to the function

woau W Am_ca xanmi. 9
0 :

For A > 0 we then have

B =1 [Teteran-
AJo 1+ 4

This 1s just the result which can be obtained by the analytic continuation of the
sum in Eq. (5) valid for [A] < 1.
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In general we cannot explicitly sum the expansion (3) (as in (7)) and we
should use some approximations: the approximative values E, (1) of E(A) can
be obtained using in (3) suitable approximations Fy(x) instead of F(x). If these
approximations share the properties

i) Fy(x)— F(x) for N — oo for almost any x€(0, o),

ii) the functions e~ "*Fy(x) (for a given 4 > 0) have an integrable majorant,
then the quantities

X
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converge to E(A) (since we can take the limit in the integrand).

We can see that the approximants Fy(x) should satisfy some conditions and
moreover in practical applications only a finite number of coefficients in expan-
sion is known. We therefore formulate the problem as follows: using the
coefficients a,, a,, ..., ay find the best approximation F,(x) to F(x) (and simul-
taneously the best approximation £,(1) to E(A)). In literature such questions
are usually only outlined and the problem is not optimized.

The construction of approximants is described in the Sect. 2. The Sect. 3 is
devoted to applications and the last, Sect. 4, contains the concluding remarks.

H. THE BOREL METHOD

Let us consider the formal power series with alternating signs
EQQ) =) a,X" )
0

in which for a large n there holds
a,~(—R)'n°n!. 10y

Here a and R > 0 are real numbers. Due to alternating signs in Eq. (10) one can
show that there exists the function E(A) holomorphic in the complex A-plane
with the cut (— oo, 0), which has the formal power expansion (9) for 1 > 0 (see
[1] and [2], where one can find a detailed dicussion of the divergent series).

The problem now is to sum up the divergent series (9). The method of the
Padé approximants is frequently used: one finds such coefficients b,, ..., b, and
c,, ..., ¢y that there holds

L L+N
T%Q\vﬂwole:m..T:..T@hP _ M Q:N:.TOANP.TZA:V.

T4+ A+ ...+ cyAY 0

One can show [2] that outside the cut (— oo, 0) the Padé approximants Py * /(1)
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conv
cor Mnmm ?”M M,_\ — 8&@:& J= - 1 fixed) to the function £(A). In this method the
pproximated by poles in the denominator of the Padé approximant

PL(A).

In wha 1
o E:M_ wM:OEm,.in ammo:c.n the method of the Borel summation, which
b mvtwovw_ﬁm::m E:.::m correct analytical properties, i.e. .:5 ap-
re holomorphic in the complex cut-plane. In this Eamrom oMo

works i i i i
instead of with the divergent series (9) with its Borel transform

F(x) = WFR.., b,=a,ln!. (an

Thi . .
ro__w hwmﬁﬂ“ﬂﬂ ow.:ﬁwnﬁmunm in the complex x-plane in the disc |x| < R to the
nction. One can show (see, e.g., [1]) that F
. : : , €.8., x) could ic-
ally continued outside the disc to the x-plane with the oA:nVAMcS e W:W_M_mwu
, —R). The

analytical properties of F(x) are shown in Fig. la

x-plane w-plane

Fig. 1. Th al mappi
g e conformal mapping of the cut x-plane onto the unit disc in the w-plane

We sh i
o0 Zw_a_owmwzn o,m”mmﬂwma the .mEuH_oEBm:Hm Fy(x) converging to F(x) for all
- M ver, require the linear dependence of F,(x) o
- . :
ay (the linearity requirement is a consequence of the linearity mmﬁw.\on:nm.eﬁw,m:m

F(x)).
Such approximants could be
) const
with the ot o B e b o MM@M“MSQ as follows. The complex x-plane
W £y = YL+ X/R) — 1
Sx) = = (12
JUa +x/R) +1 )

conformally mapped onto the unit disc [w| < 1 in the w-plane, see Fig. 1b (in Eq

A v
— w u‘H: HT HTO ﬂ — — i i .< [¢] € NN +;v
~ (&4 MA—_~N_ € _AVM- m. S Ccu A 8» bv m:a 18 n0m~ﬂ— (+1 w: rx A 9 vv.

x = g(w) = 4Rwj(1 — w). (13)

The function @(w) = F(g(w)) is holomorphic in the disc jw| < 1 and it could
be expanded into the power series so that the partial sums

oy = T " (14
0

for |w| < 1 converge 10 the O(w) = Mm.. w". In the variable x it means that the
0

approximants

N

Fu) =Y caf ") (15)

0

converge in the cut x-plane (and especially for x real and positive) to the
function

Fx) = M%E. (16)

It remains to express the coefficients c, as linear combinations of by, ..., b,. In
the neighbbourrhood of w = 0 both expansions (11) and (16) are convergent, i.€.

Y .80 = Law' a7

(in the L. h.s. we put x = g(w)). The powers g"(w) are holomorphic for [w| < 1
and one can easily show that

o) = Tew, (18
where
g = (@R)'(k + n — DYk —m!. (19

From Egs. (17)—(19) the desired relation is
k
o= 2.b.8"" (20)
0

The Eq. (20) now determines the approximants (15) in terms of the coefficients
by, by, .- b

The conditions 1) and ii) mentioned in the introduction imposed on Fy(x) are
satisfied under weak assumptions about the behaviour of F(x) on the cut i.e.
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Table 1
The approximants E,(1) — 1 compared with the exact values E(/) — 1

N A =0.001 A=10 A=50
M —0.000186680 —0.109620 —0.259146
: —0.000186662 —0.105196 —0.238472
: —0.000186662 —0.106862 —0.252244
. —0.000186662 —0.106629 —0.249383
; —0.000186662 —0.106713 —0.251419
: —0.000186662 —0.106698 —0.250839
; —0.000186662 —0.106705 —0.251265
5 —0.000186662 —0.106704 —0.251130
i —0.000186662 —0.106705 —0.251230
—0.000186662 —0.106704 —0.251171
Exact value —0.000188768 —0.106723 —0.251241

about the SAE.V on the circle [w| = 1. If e.g. |F(x)| < M for xe(— oo, — R, then
leal < M and one has xe (0, o) the estimate ,

[F(x) — Fy(x)| e * < \WA_ + \_ + WVQJ«:\2+ (x).

where f(x) is given in Eq. (12). This i
i . : quarantees the required co .
corresponding Borel approximants ! ergenes. The

N
Ey(d) =} ¢,d,(2) 1)
0
converge to the function E(4) given in Eq. (2). In the expression (21)
M o0
d,(A) = l.— e~ dx.
2). S(x)dx (22)

Now we shall test our method on the function

_ g L, A,
NTCI/\N\?‘,., ovaIme...men_N. (23)
A

Mxvmnam=m~:omm08n QGAI _Im.kbv Soocﬁmmammo_‘im_ ﬁoioqoxvmsmmo:

EQ)=1+Yan
1

with the coeflicients

n

a,=(—1yn! [] A_ —k '+ W»Lv
k=1 16
which has the asymptotics a, ~ —1)"n!. We can directly use the method des-
cribed above. Table 1 contains approximative values Ey(4) for N =1, 2, ..., 10,
which are compared with E(1) obtained directly by numerical integration of

(23).
1Il. APPLICATION TO THE ANHARMONIC OSCILLATOR

We shall determine the ground state energy E(4) of the anharmonic oscillator
which corresponds to the normalized solution of the Schrédinger equation

AI wa|~ + w .x~+ »H»v .»QCQHMG\CO ANAV
2dx? 2

with the lowest eigenvalue E = E(2). This problem cannot be solved exactly but

the perturbative expansion
Eenw+M$§ 25)
i
is well known. In Ref. [3] the coefficients ay, a, ..., a;5 in (25) were calculated.
In Table 2 we give first 10 coefficients which we shall need later. Moreover, in
[3] there is derived the asymptotic formula in which the dominant term is

a, ~ (—3)'n""n!. (26)
Table 2

The perturbative coefficients for the ground state energy of the anharmonic oscillator

n a, n a,

1 0.750000 6 —0.639828 10°

2 —0.262500 10! 7 0.132973 10’

3 0.208125 107 8 —0.314482 10*

4 —0.241289 10° 9 0.833541 10°

5 0.358090 10* 10 —0.244789 10"

From (26) it follows that our method is applicable. In Table 3 we give the
approximants Ey(4) for N=1,2, ..., 10 and for different values of A.

For the sake of completeness it is useful to describe briefly alternative
methods used in [4] and [5], [6]. According to the former method [4], the
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Table 3
The Borel approximants E,(1) — 1/2

N A=0.01 A=0.1 A=105 A=10
1 0.00493942 0.0456778 0.1790112 0.292322
2 0.00493146 0.0450384 0.1704716 0.271344
3 0.00493178 0.0452482 0.1791938 0.302256
4 0.00493178 00452342 0.1774836 0.293796
5 0.00493178 0.0452358 0.1780510 0.297654
6 0.00493178 0.0452358 0.1780018 0.297200
7 0.00493178 0.0452358 0.1780108 0.297312
8 0.00493178 0.0452358 0.1780062 0.297236
9 0.00493178 0.0452358 0.1780098 0.297318

10 0.00493178 0.0452358 - 0.1780082 0.297272

N A=3.0 A=350 A=10.0 A =500
1 0.548358 0.691076 0.894380 1.332250
2 0.483392 0.593046 0.739564 1.017578
3 0.631570 0.854202 1.229618 2.322664
4 0.570958 0.731258 0.960072 1.405536
5 0.611126 0.824060 1.195054 2.409000
6 0.604400 0.806422 1.143916 2.138580
7 0.606754 0.813376 1.166844 2.287100
8 0.604510 0.805980 1.139138 2.069160
9 0.607826 0.818176 1.190676 2.557840

10 0.605258 0.807660 1.140716 1.990442

Schrodinger equation (24) is first rewritten in the infinite matrix form
YH, Y. =E¥, n=012, .. 27N
0
in the linear harmonic oscillator basis. The eigenvalues E correspond to zeros
of the determinant
det(H,, — E6,) = 0. (28)

In [4] the infinite matrix was approximated by the finite m o m matrix and for any
m the lowest solution E“ of (28) was calculated. This m was successively
increased up to a stable value E™ = E(1). For 1 < 1 it was enough to take
m < 20. For 1 > 1 in [4], the starting point was the equation

Al 14,1 a@f Xvsg = £0(y) @8
2dy? 2 .
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Table 4

The comparise of our values of the ground state energy E(A) = Eo(4) with the same quantity
determined in {4] and [5]

A Eo(A) E() from [4] E(A) from [5]
0.1 0.54524 0.55915

0.5 0.67801 0.69618 0.7017
1.0 0.79727 0.80377 0.8125
10.0 1.64072 1.50497 1.5313
50.0 2.49044 2.49971

and similarly as before the lowest eigenvalue & = &() was numerically deter-
mined. A simple scaling argument then gives

EQA) = ABg(A1P). (30)
A different approach was proposed in Refs. [5], [6], where in the framework

of the path-integral method an accurate estimate was found of the effective
potential W(x, B) defined by

3. exp(—E) = [ el pW G, )

The ground state energy was then calculated as

E, = min W(x, p).

foro

The method was applied to the anharmonic oscillator in Ref. [5].
The methods used in [4], [5] are different from ours and consequently we can
use the results obtained in [4], [5] as a test of our method. The results are

compared in Table 4.
IV. CONCLUDING REMARKS
Let us investigate in more detail the problem of the optimization of ap-
proximants Fy(x). Instead of using the Bwvxnmsm (12), we can use any .nosmo::m_
mapping w = f(x) of a suitable domain D onto the unit disc, which has the

property f(0) = 0. The domain D should not contain the cur (— oo, —R), but
it should contain the half-line <0, o). The approximants then are

Fy(x) =Y. &./"(x), (1)

11



where the coefficients ¢, are determined by the comparison of the expansions

Y bx" =Y & f"(x)
0 ]
in the neighbourhood of x = 0.
The mg_.ox_aw:a (31) are convergent in the domain D, i.e. Fy(x) - F(x) as
N - o for xe D. This means that to a larger domain D there corresponds a
larger domain of convergence of (31). Moreover, it was ?.o<oa in [7] that the
convergence Fy(x) - F(x) inside D is asymptotically faster if D is larger. The
optimal D then corresponds to the maximal admissible domain D, which is just
the cut-plane assumed in Sect. 2.
Finally we note that a slight improvement of the described method is poss-
ible. Let us rewrite the asymptotic estimate (10) as

a,~(—R)™"I'(1 +n + a), (32)

where the I'function is defined by the formula

ao

Iz = ._. x* 7 le *dx
0

(the Eq. (31) follows from the fact that for a large n there holds
I'(l +n+a)=n! (nje). Instead of (2) it is more appropriate to use the
generalized Borel transform F(x) defined by

EA)=A1"1"¢ b ? e~ x*F(x)dx. (33)
The optimal approximants to F(x) are
Fy(x) = wn.\ "(x) (34)
with f(x) given by (12). The corresponding approximants of F(A) are
Ey) = wié, (35)
where
d,A) =A1" ~a hs e xf"(x)dx. (36)

.;w. described modification improves the convergence F(x) — F(x) mainly in
the neighbourhood of the cut (— co, — R). Since (33) contains integration over

12

the interval (0, o), the use of the modified Borel transformation has only a weak
influence on the results.

Our aim was not to present a deep theory but to show how to proceed in
practical applications using the method of the Borel summation. We applied it
to the caiculation of the ground state energy of an anharmonic oscillator
starting from the divergent perturbative expansion. The method is quite simple,
numerically modest and we have found a nice agreement with the results
obtained by different methods.
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O CYMMAUHMH BOPEJIA Ui PAA0OB TEOPUH BO3ZMYIHEHHH

B craThe AeTaNBHO OMUCHIBACTCH METOA cCymmanuu bopena ang panos Teopun BO3MYLUCHHA K
€ro NpUMCHCHHUE ANIA BLIMHCIICHHA JHEPru¥ OCHOBHOI'O COCTOAHHHA AHTAPMOHHYECKOTO OCLHILI~
aTopa. TMojyueHo xopolee COTacHe C Pe3yJbTATaMM, KOTOphie OLLIH ZOCTHIHYTBI APYrHM
METOAOM.
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