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THE AUTOMATIC PROCEDURE FOR THE ‘
UNAMBIGUOUS CHOICE OF LATTICE PARAMETERS
AND THE BRAVAIS TRANSLATION LATTICE

SIVY. P.)) SIVY, 1.}) Bratislava

A complex method for the determination of: a) the orientation matrix between the
crystallographic axes and the coordination system of the four-circle diffractometer; b)
the smallest primitive cell; ¢) the Buerger and Niggli reduced cell; d) lattice parameters
of the unit cell and the Bravais translation tattice P, C, L F, R); is described.

I INTRODUCTION

The X-ray structure analysis of single crystals nowadays is highly automa-
tized. Despite this fact it is possible to encounter in the current practice three
main problems upon which the successful solution of the crystal structure
depends.

The first problem is to find the lattice parameters (a, b, ¢, a B, v) and to
choose the o&ﬁS:omBﬁEo system and the space group, respectively. This is the
basic assumption of further procedure.

The second problem is to find the first atom(s). This procedure is today on
a very good level which as regards the methodical and the software side (the
heavy atom method, direct methods, programs SHELX76, SHELXS86, XTAL,
MULTAN, DIRDIF).

The third problem is (considering the used X-rays and the therewith connec-
ted diffraction on electrons) the location of hydrogen atoms. Here the suitably
chosen weight schemes, the calculating methods for their analysis, resp. (¢. & the
SHELX76 program), should be taken into account, various limitations and
corrections regarding the observed structural factors or programs of calculation
for generating the hydrogen atoms.
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The authors of this article deal with the analysing and the solving of the first
outlined problem of the structural analysis of single crystals by the four-circle

___diffractometer.

1. DETERMINATION OF THE CRTYSTAL ORIENTATION
AND THE ORIENTATION MATRIX

To be able to adjust any plane (hkl) to the diffraction position it is neccessary
to know the crystal orientation regarding the x, y, z axes of the diffractometer

(Fig. 1). This condition should be fulfilled by 10-—25 diffractions registered by
chance.

From the Fig. 1 it follows that the x, y, z coordinates of the reciprocal vector
d* can be expressed by the relations

x = a*h + bk + ¢}l
y=ah+ bk +cjl (1)
z=a*h+ b¥k +c¥l,

Il

S% * %k L% = . P
where a* = (a¥, af, ad), b* = (b}, b}, b, &* = (c¥, c}¥, ¢} are reciprocal lattice
vectors.

In the matrix notation

x a¥b¥ck h
y | =\ abycy k or X =AKH 2
z a*b¥ck I

& is the column vector representing in the instrumental orthogonal

coordination system of the diffractometer the reciprocal vector which fulfils the

Bragg condition 2dsin @ = ni, & is the orientation matrix and # is the column

vector of integers which correspond to indices of the diffraction in question.
Busing and Levy [1] showed that

oA = UB, 3)

where % is the orthogonal matrix of the 3 x 3 type which describes the orienta-
tion of the crystallographic axes and # is defined as

a* b*cosy* c*cos fB*
B =| 0 b*siny* —c*sinf*cosa |, 4)
0 0 1/c

where a*, b*, c*, B*, y* are reciprocal lattice parameters and ¢, a are direct
lattice parameters.
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When ## ' is the inversion matrix of %% and (%) is the transponed
matrix in relation to #%~', then

a’ abcosy accosf

@B (UBY = 1/22| abeosy b’ bacose .. (5
accos B bccosa ¢’

If the provided elements of the matrix %%~ are known, it is possible to
calculate the unit cell parameters a, b,c,a B, 7

1. METHODOLOGY OF THE UNAMBIGUOUS CHOICE

The knowledge of the lattice parameters and the crystallographic system (P,
C, I, F, R) enables immediately to begin data collecting of the integral inten-
sities, which is the main aim of diffractometric measurements.

The process of determination and verification of the right choice of lattice
parameters can be divided into three parts [3] -

A = The reciprocal space

1. Determination of the smallest primitive cell.
2. Indexing of diffractions and refinement of the orientation matrix.
3. Verification of the smallest primitive cell.

B — The direct space

4. Calculation of the reduced form (S, S», S35 S S Si)-
5. Determination of the reduced cell type (1—44).
6. The Bravais translation lattice.

C — The diffractometric tests

7. Confirmation of the crystal symmetry.
8. Check with respect to the extinction conditions.
9. Space group(s).
The aim of part A — the reciprocal space-is the choice of the primitive cell
with the shortest vectors a*, 5*, ¢*, which is the neccessary condition when
_determining the reduced and conventional cell in part B — the direct space. Part
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C — the diffractometric tests deals with the verification of the right procedure
in parts A and B.

IIL. 1. Determination of the smallest primitive cell

The refined angular values 1025 the chance registered diffractions 20, o,

@, x and the wave length 2 of the X-ray used constitute the basic input data set.

The further procedure of the calculations is divided into steps according to the

algorithm:

a) The evaluation of the coordinates of reciprocal vectors X;, yi, Zi; i=1,nfor
n diffractions [2].

b) A vector can be constructed (Fig. 2) between every two points found in this
way. The coordinates of the vectors will be denoted by capital letters (X, ¥,
Z,), where k = 1, p and p = n(n — 1)/2 is the total number of vectors.

¢) The vectors are ordered according to their magnitudes.

d) Let us take the shortest vector as @* and find all vectors collinear to it. The
absolute values of the compared vectors being taken into consideration.

e) Lets label a non-collinear vector to the a* vector as b* and again to it lets
find all collinear vectors.

f) The shortest vector non-lying in the plane formed by vectors a*, b* lets take
as c*.

g) From the relation (2) it follows that the orientation matrix is formed of
column vectors @* = (X,, Y, Z)), b* = (Xy, Y,, Z,) and ¢* = (X3, 15, Z5)

X, X; X,
aB=| v, Y, Y, | (6)
Z, Z, Z;

If it moreover applies that the determinant of % > 0, the crystallographic
coordination system of the vectors a*, 5*, ¢* in this sense is a righthand one.

1I1. 2. Indexing of diffractions and refinement
of the orientation matrix

To all so far used diffractions (10—25) indices (hkl) are assigned which are
calculated by means of the inversion matrix 9% #~'. By means of those diffrac-

tions to which for all three indices integers are assigned, the %% matrix is refined
{4, 5.
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Il 3. Verification of the smallest primitive cell

The calculation of the reduced form according to procedure outlined in
chapter I11, point 4, requires the cell which will be reduced so as to be primitive,
generated by the shortest vectors.

The exact procedure requires the systematic check of possible lattices to be
carried out in the reciprocal space (6]. The less exact but frequently sufficient
procedure includes:

— the choice of weak, medium and strong diffractions from the polaroid film,
_ the choice of three shortest non-coplanar vectors from the set of all vectors
(Fig. 2). The occurrence of only integer indices indicates the right procedure.

z

Fig. 1 An randomly oriented crystal on the  Fig. 2 Choice of the three shortest non-copla-
goniometer. nar reciprocal vectors constructed from the set
of given points including the origin.

If only too few diffractions are available, the fractional indices can occur

when performing indexing. It means that between pairs of reciprocal points all
the three shortest reciprocal vectors do not occur. In this case the indices k, k
or [ are to be integers or integers plus: 1/2, 1/3 or 2/3. The indices can be
transformed into integers so that the corresponding axes are divided by 1/2 or
1/3, i.e. the column vector of the 9 % matrix in question is multiplied by 1/2 or
1/3.
If, at the same time more axes are to be changed, the reciprocal cell could
diminish by more than the magnitude of the primitive cell. This fact could be
hardly registered if the lattice parameters were not known before hand. It is
most suitable to complete the input set of diffractions by further ones from the
polaroid film.
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111. 4. Determination of the reduced form

Three shortest non-coplanar vectors of the reciprocal spacesa*, b*, &*, which
generate the orientation matrix %4, are at the same time edges of the reciprocal
cell. The direct lattice formed by these vectors is primitive again. According to
relation (5) it is possible to determine the lattice parameters of this primitive cell
in the direct space a,, b,, ¢,, @, B, 7,

Under the Niggli cell [7, 8, 9] we understand such a cell of three dimensional
Bravais translation lattices which is based on the reduction theory of positive
definite ternary quadratic forms [10}. Niggli [11] showed that to every crys-
tal lattice regardless of its symmetry it is possible to assign just one reduced celi
defined by means of three shortest non-coplanar vectors 4, b, ¢, the scalar
representation of which

Su Sp Su a.a b.b ¢c.¢

S, S, Sn) \b.¢ 5 @

o

Q
™1
IST]

fulfils the conditions derived from the reduction theory of the positive definite
ternary quadratic forms [10].

A complete algorithm which is able to convert any primitive celi (in direct
space) into the Niggli form was proposed by Ktivy and Gruber [12].

III. 5. Determination of the reduced cell type

Mighell and Rodgers [3] classified reduced cells according to 44 forms,
the corresponding Bravais cells being obtained on the basis of transformation
matrices.

Remark. The theory of the reduced cell has been successfully used for the
identification of crystallic powder materials from the Crystal Data file, a fast
identification file ([8] with references).

111. 6 The Bravais translation lattice

The final phase is the determination of the Bravais (metric) lattice and the
following comparison of the metric symmetry with that of the real symmetry of
the crystal lattice. Transformation relations between the reduced cell and the
Bravais lattice and conventions for a choice of the axes are given in [3] in table
form. This table is very important for the next explanation.
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1I1. 7. Diffractometric tests

The crystal symmetry of a lattice can never exceed the metric symmetry
determined from the reduced cell, it can be only lower [3]. If, for example, the
reduced form corresponds to the triclinic system, the crystal lattice symmetry
can be only triclinic. If the reduced form corresponds to the monoclinic lattice,
the crystal system has to be either monoclinic or triclinic.

Mighell and Rodgers [3] showed that in 97% cases the reduced form
leads direct to the right choice of the crystal lattice. In some exceptional cases
in which the Bravais (metric) lattice symmetry exceeds the crystal symmetry it
is neccessary to find structural reasons.

If the orientation matrix %2, the lattice parameters and the Bravais lattice
are known, it is possible to test the single crystal diffractometrically: a) the check
of equivalent diffractions of suitable intensity is possible in each crystallographic
system, e.g., the Friedel law always applies and therefore the intensity of each
diffraction I(hkl) = I(hkT) (pay attention to anomalous dispersion, b) the check
regarding the conditions of the systematic absence diffractions concerns the
centred Bravais lattices (C, F, I), i.e. general indices (hkl), c) if the checks are
successful in points a) or b) resp., it is possible to search systematic absence
diffractions on axes (400), (0k0), (00/), on planes (hk0), (h0!), (Ok!) and to find
thus the space group(s) of symmetry.

IV. PRACTICAL PROCEDURE
IV. 1. Supplementary check by standard methods

Before placed on the goniometric head the crystal should be investigated by
traditional optical methods (extinction in polarized light, a broken crystal, a
twin crystal, etc.).

It is suitable to generalize the preliminary knowledge of the crystal by taking
the oscillating photograph, a zero and a first layer one. From the oscillating
photograph one direct lattice parameter is known (e.g. a) and from the Weissen-
berg photograph of the zero layer two reciprocal lattice parameters (e.g. b*, c*,
interplanar distances doy, door» resp.) and the angle between them a* are known.

From these data the volume of the unit cell can be calculated
V = af(b*c*sin a*) = (adyyodoor)/sin ¥, (8)

which equals the volume calculated by means of the matrix %#%.
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The Weissenberg photograph of the first layer shows a nonorthogonal lattice
when the axes are bent:

———a) triclinic, with the axis of rotation about the vector 4, b, or ¢;

b) monoclinic, with the axis of rotation about the vector a or ¢;
¢) rhombohedral, with the axis of rotation about the vector &, b or ¢;
d) hexagonal, with the axis of rotation about the vector @ or b.

The calculated value of volume (8) as well as the knowledge of the non-
orthogonal or the orthogonal lattice, resp., helps to check the results.

1V. 2. Calculations

The program with the name UB was assorted for a Syntex P2, diffractometer.
It is written in the FORTRAN IV, contains approximately 1800 statements, the
neccessary memory is 140 kbytes and the computing time varies by about 5 s for
one input set.

It is adjusted universally besides the subroutine COORD which precalculates

the angular values 20, @, ¢, x to the vector coordinates x, y, z. Using the right

relations for the given type of a-diffractometer in the subroutine COORD it is
possible to modify the program UB in this sense for any four-circle diffrac-
tometer.

The basic input data are always the wavelength of the X-rays used (LAM-
BDA), the refined angular values 20, w, ¢, x (TTHT, OME, PHI, CHI) for the
maximal number of 30 diffractions and the parameter SIGMA, i.e. the absolute
error for the individual members of the scalar representation of the primitive cell
S; (chap. 111.4).

The UB program enables:

1. The processing of the diffractometric measurements carried out in a non-
symmetrical setting (@ # ), 1.e. obtaining the desired results for an un-
known single crystal through diffractions from the polaroid film.

2. Working in a symmetrical setting (@ = w), i.e. testing the known single
crystal monitored before ona diffractometer, applying the values 26, o, ¢, ¥.
Point 1 is valid for an unknown single crystal, but now 0= aw.

3. To remove fractional indices. If in the first run of the UB program diffrac-
tions are indexed by fractional indices (chap. IIL.2, I11.3.), an individual input
to the program is enabled with suitable modified vectors of the %% matrix
(the application of the parameters LAMBDA, TTHT, OME, PHI, CHI and
SIGMA is neccessary).

4. To test the input diffractions with regard to their preceding occurrence in the
set. This possibility is suitable, since in the set if vectors a very short vector
could occur that could be further considered as the shortest a*.
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5. If the program UB does not choose three non-coplanar vectors, the (hk/)
indices will be greater than 100. It is possible to change the COL and/or COP
parameters (in default are 2.58). These are significant in a selection of the
collinear and the coplanar vectors (e.g. COL and/or COP will be equal to 30)
and the program can run again.

6. To change the error value SIGMA (=0.12 A2, default) for the scalar re-
presantation of the primitive cell S;.

7. To obtain the results in table form for the experiment (diffractometric meas-
urements) and for publication by giving the summary formula and the
density D,,.

8. In one run of the UB program it is possible to treat any number of structures
with any combination of possibilities 1-—7.

V. EXAMPLES

An example to illustrate calculations is NaCl. It crystallizes in the cubic
system, space group Fm3m, a = 5.6396 A, A(MoKa) = 0.71069 A, F(000) =
=112, V=179.37 A3, M, = 58.4428 gmol™', Z=4, D, = 2.16371 Mgm™3,
D, =2.16386 Mgm™>. .

From the polaroid film 15 diffractions of weak, medium and strong inten-
sities were chosen (Table 1). Point 16 is the origin. The example is described in
detail and can serve as a test of the UB program. The UB program chose out
of 120 vectors three shortest non-coplanar vectors between the points No. 16-4
(@*), 16-5 (b*), 4-2 (¢*) and indexed the diffractions from Table 1. The indices
in question are given in Table 2.

Applying the equation (5) to the refined orientation matrix the lattice par-
ameters of the primitive cell in the direct space were calculated:

a,=3988, b,=3.99, c,=398A

P
@, =119.92, B, =60.06, y,=120.02°

For the absolute error SIGMA = 0.12 A? the transformations of the proposed
primitive cell have run as follows- Table 3. From Table 3 it is evident that the
Buerger and the Niggli cells are the same. The Niggli cell is positive (Typ I) with
the parameters:

ay=3.988, by=3988, cy=3988A

ay = 60, v = 60, ¥y = 60°.
From the last line of Table 3 it follows that
a) S, = Sy = Sy, (the reduced form No. 1—38)
b) Sy = Sil2, S5 = Suf2, S = Si/2,
i.e. the reduced form has No. 1 and the lattice is cubic, F centered.
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Table 1
Angles (o) and instrumental coordinates of diffractions from the polaroid film for the structure of

NaCl.
N° 20 o @ X X y z
1 14.47 359.06 230.46 9.40 0.2125 —0.1290 0.0407
2 14.47 359.11 136.54 20.65 —0.1347 —0.1939 0.0879
3 14.46 358.96 330.17 68.68 0.0136 0.0966 0.2320
4 12.51 359.81 190.39 56.43 0.0457 -0.1134 0.1804
5 12.51 359.82 76.24 40.04 —0.1668 0.0157 0.1393
6 20.52 359.28 89.53 7.68 —0.3471 —0.0650 | 0.0467
7 20.52 359.44 181.95 21.61 0.0779 —0.3228 0.1289
8 20.52 359.41 28.59 33.07 —0.1992 0.2253 0.1909
9 20.51 359.44 244.77 51.33 0.2262 -0.0327 0.2731
10 20.50 359.24 102.87 66.37 —-0.1214 —0.0974 0.3200
11 25.19 359.56 178.20 58.23 0.0913 —0.2267 0.3612
12 29.17 359.72 310.39 72.56 0.0274 0.1929 0.4644
13 25.20 359.65 67.69 41.03 —-0.3339 0.0313 0.2791
14 25.20 359.68 279.78 25.77 0.3608 0.1612 0.1849
15 12.52 359.92 223 13.66 —0.0323 0.2095 0.0512
16 origin 0.0 0.0 0.0
Table 2
Indices assigned to diffractions from the polaroid film for the structure of NaCl.

N° h k /

1 0 1 -1

2 -1 0 -1

3 1 -1 0

4 0 0 -1

5 0 —1 0

6 -1 -1 0

7 -1 1 -2

8 i -2 1

9 1 0 -1

10 0 —1 -1

11 0 0 -2

12 2 -2 0

13 0 -2 0

14 2 0 0

15 1 -1 1

The UB program uses Table 1 in [3]. For the wavelength A used in the experi-
ment, we get the basic lattice parameters of the Bravais (conventional) lattice

(%): a=b=c=5640A

a=p=1y=90°
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Table 3
Transformations of the primitive cell for the structure of NaCl.
cet Bold || B D & | e
proposed 15.906 15.906 15.906 —17.953 7.953 —17.953
Buerger 15.906 15.906 15.906 7.953 7.953 7.953
Niggli 15.906 15.906 15.906 7.953 7.953 7.953 +

Crystallographic lattice parameters agree with the calculated ones with a pre-
ciseness of 0.007%.

Knowing the lattice parameters and the Bravais lattice it is possible to begin
immediately with the automatic measurement of integral intensities.

VI. CONCLUSION

The aim of the contribution was to describe in detail the procedure which
enables from by change found diffractions of an arbitrary oriented single crystal
with regard to the instrumental axes of a four-circle diffractometer to determine
unambiguously the lattice parameters and the Bravais primitive or centered
lattice. This knowledge permits immediately to begin measurements of integral
intensities. The precision of the obtained results agrees very well with the
experiment. On the basis of the above theory a program was written and tested
on 15 structures. In 13 cases the calculated results agreed with experimental
measurements carried out by other techniques (oscillating, the Weissenberg
equiinclination, diffractometric). In two cases (monoclinic systems) the choice of
an experimentally determined cell did not correspond with the cell found by the
program UB by means of the theory of the reduced cell. Possibilities of the
choice of another unit cell are described by Gruber [8].

The UB program can be obtained from the second author. If there are some

problems in using this program, will you kindly send the output listing of the
UB program to his address.
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