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HYDROMAGNETIC CONVECTION OF RADIATING
RAREFIELD GAS THROUGH A VERTICAL CHANNEL

SANYAL, D. C.,') JASH, B. P..") Kalyani

The effect of radiation on the combined free and forced convection flow of an
electrically conducting rarefied gas through a vertical channel permeated by a uniform
transverse magnetic field with slip flow and temperature jump boundary conditions
has been considered. The expressions for the velocity, the induced magpetic field,
temperature, the flow rate and the heat transfer coefficient due to thermal conduction
have been obtained and the influence of radiation on the first three quantities has been
shown graphically.

1. INTRODUCTION

The problems of heat transfer in electrically conducting fluids permeated by
electromagnetic fields have been studied by many authors. Such studies are of
great importance in the design of magnetohydrodynamic generators, cross-field
accelerators, shock tubes, pumps, €tc., a comprehensive review of which has
been given by Romig [1]. The above studies were, however, restricted to the
case in which the effect of radiation on heat transfer was absent. However, this
effect is of great importance in space applications and higher operating tem-
peratures.

Grief et al [2] obtained an exact solution for the problem of laminar
convection of a radiating gas in a vertical channel and Viskanta [3] con-
sidered the forced convection flow in a horizontal channel in the presence of a
uniform vertivac magnetic field. Gupta and Gupta [4] studied the radia-
tion effect in hydromagnetic convection in a vertical channel.

Now, in the case of rarefield gases, the ordinary continuum approach fails to
yield satisfactory results. When the gas in slightly rarefield, results agreeing with
the observed phenomena can be analysed by solving the usual Navier-Stokes
equations together with the modified boundary conditions allowing for a veloc-
ity slip at the boundary surface [5]. For subsonic flows of relatively hot gases,
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the assumption of incompressibility is physically realizable {6]. Such problems
have good industrial applications in aircraft response to atmospheric gusts,

—-reentry of a space craft etc.

The purpose of the present paper is to consider the effect of radiation on the
combined free and forced convection flow of an electrically conducting rarefied
gas through an open-ended vertical channel in presence of a uniform magnetic
field perpendicular to the direction of flow. Confining the analysis to the
optically thin limit, closed-form solutions are obtained for temperature, veloc-
ity, induced magnetic field, flow rate and the heat transfer coefficient by using
the first order velocity slip and temperature jump boundary conditions. Varia-
tions of temperature, velocity and the magnetic field are shown graphically for
different values of the radiation parameter.

II. BASIC EQUATIONS AND THE PROBLEM

The equations for the steady motion of a viscous, incompressible, conducting
fluid are (in M. K. S units)

(v. V= —19p + L (rot B) x H+ W'v + gpoK, )
o Ho
while the magnetic induction, energy and continuity equations are
‘0 = rot(v x $+I_!<~I, ?)
uo

2 1 J?
(v.V)O@=aV'O——V. g+ P+ — 3)

oCp o
V.v=0. C))

In the above equations, v is the velocity, B the induced magnetic field, H the
total magnetic field, k the unit vector in the vertical direction, o the reference
density, p the pressure, p the magnetic permeability, v the kinematic viscosity,
£ the acceleration due to gravity, f the coefficient of volume expansion, o the
electrical conductivity, a the thermal diffusivity, C, the specific heat at constant
pressure,

0=T-T1,, 5)

T being the temperature and T,, the reference temperature (taken as a constant),

g the radiative heat flux, & the viscous dissipation function and J*/o is the
Joule dissipation function, J being the current density. We shall assume that o,
U, V, g, B, o, a and C, are constants.
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Let us consider the flow of an electrically conducting rarefied gas through a
vertical channel between two non-conducting vertical plates, distant 2L apart.
The surface temperatures of the plates are assumed to vary along the vertical
direction. Let the centre of the channel be taken as the origin, the vertical
direction as the z-axis and the x-axis is along the direction normal to the plates.
We also assume that a uniform magnetic field B acts in the direction of the
X-axis.

Now for a fully developed laminar flow in a uniform magnetic field, the
velocity and the induced magnetic have only a component in the vertical
direction and all the physical variables expect temperature and pressure are
functions of x. Assuming that the temperature T inside the fluid has the vertical
gradient N (a constant), we can take [4]

T=T*%x)+N.z. 6)

The momentum equations in the x and z-direction are

o mmmn 0, N
Ox udx
QN
- <|.N+m.wmm+w§®*+2.wvlwm|w”o ®)
dx?  podx 00z
where
O =T*x)—T,, )

v is the velocity and B is the induced magnetic field in the z-direction.
The equations of continuity is satisfied identically. The energy and the
magnetic induction equations are

2%
Now o8O _ 1 e (10)
dx? oC, Ox
d’B dv
—— 4+ ouB,— = 0. (1)
dx? a ® dx

In equation (10), we have neglected viscous and ohmic dissipation. The fluid
does not absorb its own emitted radiation in the case of an optically thin limit,
that is, there is no self absorption, but the fluid does absorb radiation emitted
by the boundaries. Using the relation [7]

@Qa %,8 A&m&v
tHAﬂlﬂa NI‘Q» CNV
oG '), Selar).
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for an optically thin limit and for non-grey gas near equilibrium, it is easy to see
that the equation (10) gives
N d2e*
dx?

it % Ky, A§v dA
0Cpr Jo dT /o
and K, is the absorption coefficient, ¢,, the Planck function and the subscript 0

(zero) indicates that the quantities have been evaluated at the reference tem-
perature T, . We shall limit our study to small variations of temperature.

Integrating (7) with respect to x, we get

Nv=a

— CO*, (13)

where

p= IW;S.

Substituting this into (8) we have

2
vIv B dB | per ~ LI o, (14)
dx? o dx o dz

The Lh.s. is a function of x, only and the r.h.s. is a function of z only. Then each
side must be equal to the same constant C, (say). Thus
dv B, dB

vE2 L B0 C8 pex=C,. (15)
dx?  po dx gh _

This constant C,; depends on the physics of the problem. It may be determined
either from the end conditions of pressure to which the channel is subjected or
from the mass flow through the channel. If we introduce the following non-
dimensional quantities e

n=x/L, u=Lvla, t=—@*NL, b= BB, (16)
1
M = the Hartmann number = B, L(o/vg)’
R, = the Rayleigh number = gBNL*/va
P, = the Magnetic Prandtl number = aop,

equations (15), (11) and (13) reduce to

S R = (17)
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1 d%  du
e o = 1,
P, dn* dn
2
4 R (18)
dn?
where
2 3
F=EC o _GL (19)
(44 a

The first order velocity slip and the temperature jump boundary conditions,
neglecting the thermal creep term are [8]

u=“th du at= +1 2
e T1, (20)
— .dt
t=+f-— at= 2], 21
Y ey
where
\~ = N '.\m N\_u
/i
/, being the reflection coefficient and
2 — 2v. L
joizh v L
fi v+1 P

/> being the thermal accomodation coefficient, v is the specific heat ratio P is the
Prandtl number and

1

2
i
()
2po

is the mean free path. We shall take 4 and f as constants.
Also, since the walls of the channel are non-conducting, the boundary
conditions for the magnetic field are

b=0atn=+1. (22)
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II1. SOLUTIONS OF THE PROBLEM

.. Integrating the equation (18) w.r.t. 77, we get

1d + u = constant = C;. (23)
P, dn
Eliminating u and & from (17), (19) and (23) we get
4 z
9t Femy Y arF+ RY =G, (24)
dn* dn?

where
Q& — Ewﬁw - QN.

From equation (24) we get the solution for #(1) by using the boundary
conditions (21) and also obtain the solutions for u(7) and b(n) from (19) and
(23) by using the boundary conditions (20) and (22).

These solutions are

C
t(n) = A,coshK,n + A,cosh K, g + ——*—, 25
(m 1 11 2 21 MF 1R, (25)
u(n) = (F — K)A,cosh K, + (F — KD A;cosh Ky + ——4— . (26)
n= 1 1 W 27432 21 ENNAJLT %nu
b(n) F—-K} . .
—~L =1 A (nsinhK, —sinhK,77) +
P X, (n 1 1
— 2
+ m|~m~mw A,(nsinh K, — sinh K, ), @7
2
where
i
1 2 1 232 W ’
K, K,= m%+ MY + mﬁf M)y — 4R} |,
A, = — lﬁlul?ﬁl K3) (cosh K, + hK,sinh K;) —
‘T M+ R)A i o
— F(cosh K, + fK,sinh K,)], (28)
A= —— S [(F— K?)(cosh K, + hK,sinh K,) —
(M?F + R)A
— F(cosh K, + fK,sinh K))],
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A = (F — K})(cosh K, + hK, sinh K,) (cosh K, + fK;sinh K,) —
— (F — K?)(cosh K, + hK,sinh K,)(cosh K, + fK,sinh K).

The non-dimensional flow rate & and the heat transfer coefficient #,(at the wall
1 = 1) due to thermal conduction are given by

1
&Hxﬂ udn =

-1

. C
HN\»lehwmmnrﬁ.*.\mNAM.IN&mEEN.TLI@ 29
ﬁ;_ﬁ D sinh K, + A (F = K sinh Ky + ot (29)
and
h,= —(dt/dn),-, = 4, K, sinh K, + 4, K, sinh K. 30)

IV. RESULTS AND DISCUSSION

It is seen that the radiation tends to increase the rate of heat transport by
causing the increase of temperature of the gas. Thus the radiation effect reduces
the influence of natural convection by reducing the temperature difference
between the fluid and the channel walls. By taking R, =1, M2=10, C, =1,
h =02, f=0.5, this effect has been shown in figure 1. Due to this effect, the
velocity u(m) at a point also decreases with increase of 7. This is shown in

»
\
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Fig. 1. Fig. 2.

figure 2. In the case of the induced magnetic field (Fig. 3) it is seen that the field
first increases with the increase of F up to =0 from = —1 and then
decreases with F and is zero again at n = 1.
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IF'MAPOANHAMMNYECKAS NMEPEJAYA PAAMAIIMOHHO OYMIMEHHOTI'O
TA3A B BEPTUKAJTBHOM KAHAJIE

M3yyeHbl rpaHUdHble YCIOBHA BIHAHNA PaJdalMH HA CBOGOIHBIH H BBIHYMICHHBIH NPOTOK
3NIEKTPHYECKH NMPOBOAMMOIO Ia3a BEPTHKAIbHBIM KaHANOM, obecrevyeHHbId NONepevyHbIM Mar-
HHTHBIM TTOJIEM C JIaMHHAPHBIM NIPOTOKOM M TEMIIEPATYPHBIM niepenaloM. [TonyueHs! Bolpaxenus
CKODOCTH, MHAYHHPOBAHHOTO MArHHTHOTO TOJI, TEMNEPATYpPhl, CKOPOCTH MPOTOKA U KO3(-
dbunmenTa nepenayu tena. BausHue paaualuy Ha NepBbie TPH BEIMYUHbI IPUBHAMTCA B rpaduyec-
kot ¢popme.

336



