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THE CHANGE OF THE FFIRST ADIABATIC
INVARIANT OF A CHARGED PARTICLE IN THE
DIPOLAR GEOMAGNETIC FIELD WITH D, VARIATION

ILYIN, V. D.,') Moscow, KUDELA, K_?) KIMAK, L.,% Kosice

The fluctuations of the magnetic moment of a charged particle orbital motion in
a geomagnetic dipolar field disturbed during magnetic storms are studied. The rela-
tion between the relative change of the magnetic moment of particle mirroring in
opposite hemispheres during one half of the bounce period in a perturbed and an
unperturbed field estimated theoretically is analysed by numerical calculations of
particle trajectories. A satisfactory agreement is found as regards the description of
the change of the first adiabatic invariant, adequate to the dipolar field.

L INTRODUCTION

The first adiabatic invariant of tharged particle motion in the magnetic field
is the magnetic moment of its orbital motion . The stability of the motion of
particles in magnetic traps including geomagnetic ones is controlled by the
degree of conservation of an invariant g during manifold bounces of the particle
along the field line between the mirror points. The character of the motion
depends on the parameter of the nonadiabaticity y = o/R,, where g is the
gyroradius of the particle and R, is the curvature radius of the field line. For the
dipolar field the value y = 3p/gBM, where p is the impulse of the particle, ¢
— its charge, B the magnetic field magnitude and M is the dipolar moment. For
a low y(x < 1) the conservation of u is satisfied. The adiabatic invariancy of y
in the general case means that the magnetic moment is slightly changing in
infinite time. This is connected with the possibility of a superposition of small
fluctuations of u during manifold oscillations of the bouncing particle. These
superpositions Au may have a statistical character {1]. The random changes of
u lead to the smoothing of the mirror points along the guiding field line. This
may lead as a consequence to the entrance of a part of the particle population
into the loss cone. For the description of losses of particles it is necessary to
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know the corresponding diffusion coefficient on #, which is determined through
the value of Au related to the half period of the latitude bounces.
In our earlier paper [2] we have shown the change of the shape of the loss cone

- for particles trapped or quasitrapped in a dipolar magnetic field when the D,

variation representing the distortion of the geomagnetic field by the ring current
is present. Here we estimate on the basis of trajectory computations and of the
theory the value Ay in the dipolar geomagnetic trap distorted in the same way
during the main phase of the a geomagnetic storm. The distorted field means a
quiet geomagnetic field plus the D,, index field which is in the equatorial plane
directed antiparallel to the main field [3]. During the magnetic storm a depress-
ion of the magnetic field is formed resulting in an increase of nonadiabatic
effects of the radiation belt particles [4]. The duration of the D, perturbation is
usually longer than the periods of cyclic motion of the particle, thus we shall
assume the D,, variation independent of time and we characterize it by the
amplitude of disturbance 4. Further, we assume for simplicity that the addition-
al field 4 is uniform. In that case the sum field in the cartesian coordinate system
with the centre in the dipole will differ from the usual dipolar one [5] in the
z-component
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where R? = x? + p” + 2% the axis z {1 B,,, the index “¢” means that the corres-
ponding value is taken on the equator (z=0) and B, is the sum of the field
Auum = WN - \Nv.

1. THEORETICAL ESTIMATES

We shall find the expression for Ay in the described field B,. Under real
conditions it can be ralated to the particles “created” during the storms of the
geomagnetic field, when during some time interval the described model is
realized and the betatron effects may be neglected. The case of particles trapped
before the substorm, when changes of all parameters in the system “‘particle-
magnetic field”” should be taken into account, will be discussed separately. We
shall make the computation of the value Au by the scheme given in paper [6].
The initial expression for the determination of Ap is the following [7]:
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where vy, v, are the parallel and the perpendicular component of the velocity
vector related to the sum field B,, /is the coordinate along the field line measured
from the equator, !, and /, are mirror points, ¢, is the phase of the particle
measured in the same way as in (2], R,, is the curvature radius of the field line
and wis the gyrofrequency of the particle. The magnetic field is described by the
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where cos @ = z/R. In the magnetic field (3) the equation of the field line has the
approximate form [4]

R~ _H?m5~®A~ + Wmio ®ﬁ\? + wu _ “4)
where b = h/B,.

The integration of (2) is carried out by the method described in [6]. We
approximate the function (2) as the sum in the degrees of / near B, = 0 and we
confine ourselves to the derivatives of the second order. Then the zero of the
function B,(/) will be the imaginary value I'near which the following expansion
is valid
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Substituting (5) into the equation (2) we have as a result
L 1 N 1,
Aubhv ~ (.74 14 - i, cos eo.oxnﬁl Iw_\@@ 0 — mwﬁ
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X~ 5.04 x 1075 L?pc,
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where L = R,/R,, pc is measured in MeV, R, is the radius of the Earth and Q,
is the equatorial pitch angle. A further task is to evaluate with the help of
numerical calculations of the integration of particle motion in the magnetic field
B, the correctness of the analytical solution 6).
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III. TRAJECTORY COMPUTATIONS

The motion of the particle in the magnetic field (1) is described by the Lorenz
€quation in the cartesian system of coordinates

X = Qoku - Nw.vu v\ = QAN.&.« - .v.nwnvu i= Dﬁkm - m\wpv. Aﬂv

where @ = g/m, m is the mass of the particle. The initial conditions are set in the
equatorial plane (z = 0) and are determined by the point of injection Ry(x,, 0, 0),
the velocity o,, the pitch-angle a, and by the phase ¢, defined as the angle
between the meridional plane and v, measured in the sense of the particle
gyration. To the initial phase @, = 0 there corresponds the point R,(x,, 0). The
initial velocity v, is given in the values of ¢ and @(vysin @, cos @, v, sin a,sin g@,,
Uy c0s a,). The numerical integration of (7) was performed by the Runge-Kutta
method of the fourth order. Because of the axial symmetry the accuracy was
controlled both according to the conservation of v? and according to the
generalized impulse of the particle having the form in the spherical coordinates

P =mR?sin’ @p + gRsin OA,, = const, ¥
where 4, is the vector potential of the sum field. In our case

\Km5®+ hRsin @

A, = . 9
50 R 5 ®
From equations (8) and (9) it follows that in the equatorial plane
= . 1 b
R,sin g, sin +.|A_ +IVHN , 10
Do R, 5 I4 (10)
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where R, = R/IC,, C, = Afwxv is Stérmer’s unit of length and the constant
m .

7, is the Stérmer length for the case b = 0. The expression (10) could be used for
adjusting the initial -conditions related to one tube of force (y,(R,, a,,
©o) = const). )

In trajectory computations there was evaluated the change of the magnetic
moment of the particle orbit H=mv}[2B, during one half of the bounce motion,
i.e. during its one pass between the mirror points. The integration (7) was
performed from the €quator to the mirror point (z > 0) and then after the
change a -+ — g and Vo= — ¥, the trajectory of the particle was computed from
the equator to the conjugated point (z < 0). Such a procedure is equivalent to
the direct and the backward integration (in time) of equations (7) from one point
on the equator. This way is suitable because the particle moving from one mirror
point to another crosses the equatorial plane with the necessary parameters
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R(x,, 0), a,, @,. The primary aim of the trajectory computation was the task to
find the value of K by means of the value
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In this notation

where B,, is the field in the mirror point. According to the theoretical esti-
mate (6)
K=2%.2_15 (13)
3y b

IV. RESULTS AND CONCLUSION

The theoretical dependence of y on b for three selected triplets of values Xes
2, and @, is shown in Fig. 1 by straight lines. The experimental data .i:or
denote the results of trajectory computations are presented in Fig. 1 as discrete
points. The computations were performed for three energies of protons, :M..B.m_w
50, 200 and 600 MeV and severalI. parameters below L = 3. The D,, variation
was set for given initial parameters with the step 50 nT from zero up to 400 nT.

Fig. 1. Results of computed values ¥ (defined by
(11) dependent) on b (b = h/B,, sce text). Three
sets of data are displayed: E =50 MeV,
L=24 y/3y=0.095, a= 4.01°, @ = 140° (0);
E=50MeV, L =26, X3y =0.112, a = 401°,
¢ = 140° (Q); £ = 200 MeV, L = 2.6, /3y =
=0.219, a = 20°, ¢ = 56° (A). The correspond-
ing theoretical dependencies are shown as
straight lines. The decrease of the computed
values from the theoretical ones is apparent for

larger /3y and large values of D,. 0 o1 a2 b

From Fig. 1 we can see that the computed values are placed in the neighbour-
hood of their corresponding theoretical lines. Some dispersion of the ooiﬁ:ﬂoa
points is connected with the method of determination of Ay according to
formulae (12). It is possible to select such initial conditions for which the
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fluctuations of i around the mirror points are periodical and minimal. In such

average values of g, and y, will be quite wel]
described by expression (12). If the quasiperiodicity of the motion is strong,
which is e.g., the case of large a,, then it is practically impossible to compute Ay.
From (11) and Fig. 1 it follows that between the theoretical and the experiment-
al values Ay (b) and K an agreement is acceptable.

The D,, — field may sufficiently enchance the changes Ay and consequently
it may lead to an enhanced dispersion of the mirror points in R This effect may
cause the breakdown of the conditions necessary for the finity of the motion and

to the quasitrapping of the particles. These questions however, belong to a
different sphere of interest.
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V3BMEHEHUE ITEPBOIO AAUABATUMECKOIO HHBAPUAHTA 3APSKEHOI
YACTHLUBI B JMIIOJILHOM FEOMATHETHYECKOM ITOJIE
B 3ABUCUMOCTH OT D, BAPUAIINN

B pa6ore uayyarores nykTyanuu MaruTHOrO MOMEHT2 OpOHTAILHOrO ABHKEHHS 3aPAKHEIX
9aCTHI B TUTIOJILHOM IIOJIE HAPYILEHOM MAarHuTHEIMU Gypsmu. C npumeHeHnem HYMEPHYECKHX ;
BBIMHCNEHHUI, TeOpeTHYECKH AHATH3UPYETCA 3aBHCUMOCTh OTHOCHTENbLHLIX U3MEHEHUH MarHuT- :
HOI'0 MOMEHTA 4aCTHIBL, 0TO6paKeHoil B 06paTHOM nonywapus so BDEMS NONTYNEPHOAA KayKa, OT
X TPACKTODHIA B HCKXKEHHOM H HE UCKAKEHHOM nostsx. [Tpuemnemoe cornacue TIOJIy9€eHO KOraa
epBed anuabaTuyeckuit uHBapUanT COOTBETCTBYET JHITOJILHOMY TIONIO.
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